







# Modélisation de la salure profonde au droit et en aval du bassin potassique

Rapport final

# BRGM/RP-54389-FR

juin 2006

Étude réalisée dans le cadre des projets de Recherche du BRGM 2003 EAU 06

M.L. Noyer, P. Elsass

#### Vérificateur :

Nom : André MENJOZ

Date : 05/06/2006

Original signé par A. MENJOZ

#### Approbateur :

Nom : Didier PENNEQUIN

Date : 06/06/2006

Original signé par D. PENNEQUIN

Le système de management de la qualité du BRGM est certifié AFAQ ISO 9001:2000.









**Mots clés** : nappe d'Alsace, Bassin Potassique, aquifère multicouche, modèle maillé, maillage gigogne, hydrodynamique transitoire, transport de salure, effets densitaires, interactions nappe rivières, MARTHE, GARDENIA

En bibliographie, ce rapport sera cité de la façon suivante : NOYER M.L., ELSASS P. (2006) – Modélisation de la salure profonde au droit et en aval du bassin potassique. Rapport final BRGM/RP-54389-FR.

© BRGM, 2005, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

# Synthèse

Cette étude a été réalisée sur crédits propres du BRGM (Direction de la Recherche) avec cofinancement de la Région Alsace, de l'Agence de l'eau Rhin-Meuse et des Mines de Potasse d'Alsace (MDPA).

L'objectif de cette étude était la mise au point d'un modèle hydrodynamique de gestion de la pollution saline de la nappe d'Alsace, dans les couches superficielles comme en profondeur, au droit et en aval du Bassin Potassique. Ce modèle doit permettre de suivre l'évolution de la salure dans le temps et d'évaluer l'impact de différents scénarios d'arrêt des pompages de fixation ou de dépollution des MDPA, pour apporter une aide à la décision.

Un modèle multicouche prototype avait été construit en 1998 sur la base des connaissances de l'époque, avec un maillage uniforme à la maille de 500 m cohérent avec le maillage du modèle hydrodynamique régional (LfU 1996). Malgré les résultats novateurs qu'il apportait, la taille des mailles était trop grande pour qu'il puisse servir de modèle de gestion.

La construction du nouveau modèle affiné s'est appuyée d'une part sur la réutilisation d'une partie des données du modèle prototype quand c'était possible et d'autre part sur l'analyse et l'intégration des nouvelles connaissances acquises depuis 1998.

Les étapes de réalisation de ce nouveau modèle ont donc été les suivantes :

- la redéfinition complète de la géométrie des couches alluviales prenant en compte les nouvelles données issues en particulier de la géophysique et de l'analyse des coupes de nouveaux forages réalisés récemment dans le Bassin Potassique ; de plus, une topographie plus réaliste tenant compte des affaissements dans le Bassin Potassique a été fournie par les MDPA.
- une meilleure définition de l'historique des terrils et de leur impact en fonction des travaux de dépollution entrepris, en lien avec les MDPA ;
- une discrétisation horizontale affinée à un maillage de 125 m dans la zone du Bassin Potassique ; en conséquence toutes les données sont prises en compte de façon beaucoup plus précises dans cette zone ;
- la mise à jour de toutes les données nécessaires pour l'hydrodynamique (données hydro-climatiques, données piézométriques, données du réseau hydrographique, recensement des pompages et des drains superficiels et profonds) ainsi que pour le transport (cartes de concentrations, chroniques de salure, données d'infiltration sous les terrils); ces données ont été complétées, analysées, critiquées et discrétisées pour adaptation au nouveau maillage et à la nouvelle période de calage;
- le calage de l'hydrodynamique sur la piézométrie sur 27 cycles hydrologiques (janvier 1978 à décembre 2004) au pas de temps mensuel, en prenant en compte

les interactions dynamiques avec le réseau hydrographique (rivières, canaux, drains) ; environ 20 piézomètres et 5 stations de jaugeage ont servi de points de contrôle ;

 le calage du transport des chlorures sur les chroniques observées au pas mensuel de janvier 1992 à décembre 2004 avec contrôle sur les cartes de salure de 2004 et sur les évolutions en 19 piézomètres et 17 puits de fixation.

Malgré quelques imprécisions au voisinage immédiat des terrils où les effets densitaires sont très importants, notamment pour les terrils traités par dissolution accélérée, la restitution des cartes historiques des chlorures et des chroniques de concentrations observées est globalement satisfaisante.

Après finalisation du calage du modèle, différents scénarios d'exploitation ont été mis en œuvre pour prévoir l'évolution future de la salure dans la zone d'étude, en fonction de différentes hypothèses sur le maintien en fonctionnement des pompages de fixation et de dépollution.

Le scénario dit tendanciel était basé sur des prévisions de traitement des terrils et d'arrêt successif des pompages jusqu'en 2014 établies par les MDPA. Ce scénario prévoit notamment qu'en 2014 tous les terrils ont été traités et tous les ouvrages de pompage non utilisés pour l'AEP sont arrêtés.

Le scénario 1 reprenait les mêmes prévisions de traitement des terrils mais supposait que les pompages étaient maintenus au rythme de 2005 jusqu'en 2014, et qu'ensuite tous les pompages (hors AEP) dont la concentration était descendue en dessous de 200 mg/L étaient arrêtés.

La comparaison des simulations de ces deux scénarios aux échéances 2014 et 2027 montre que les prévisions des MDPA sont optimales sauf en ce qui concerne les barrières hydrauliques au Sud d'Ensisheim, qui devront probablement être maintenues en service plus longtemps que prévu, voire éventuellement au-delà de 2014.

Dans les deux cas les simulations indiquent que les langues salées aval seront largement nettoyées en surface en 2014 et en profondeur en 2027 ; dans le Bassin potassique il faudra attendre 2027 pour un nettoyage de la partie superficielle de la nappe, tandis que des concentrations jusqu'à 2 g/L pourront subsister en profondeur.

# Sommaire

| 1. | Introduction                                                                                                                                                                     | 11                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. | Etat des connaissances et données recueillies                                                                                                                                    | 13                         |
|    | 2.1. CONTEXTE HYDROGEOLOGIQUE                                                                                                                                                    | 13                         |
|    | 2.2. CONTEXTE DE LA SALURE                                                                                                                                                       | 13                         |
|    | 2.3. RAPPEL DES TRAVAUX ANTERIEURS                                                                                                                                               | 16                         |
|    | <ul> <li>2.4. DONNEES POUR L'HYDRODYNAMIQUE</li> <li>2.4.1.Données piézométriques</li> <li>2.4.2.Données du réseau hydrographique</li></ul>                                      | 17<br>17<br>18<br>26       |
|    | 2.4.4. Prélèvements                                                                                                                                                              |                            |
|    | <ul> <li>2.5. DONNEES POUR LE TRANSPORT DE SALURE</li></ul>                                                                                                                      | 31<br>33<br>34<br>37<br>40 |
| 3. | Construction du modèle hydrogéologique                                                                                                                                           | 43                         |
|    | <ul> <li>3.1. MODELE CONCEPTUEL</li> <li>3.1.1.Etat des connaissances</li> <li>3.1.2.Alluvions rhénanes</li> <li>3.1.3.Alluvions vosgiennes</li> </ul>                           | 43<br>43<br>46<br>46       |
|    | <ul> <li>3.2. DEFINITION DES COUCHES AQUIFERES</li> <li>3.2.1.Définition des épaisseurs des couches</li> <li>3.2.2.Zonage des perméabilités</li> </ul>                           | 48<br>48<br>52             |
|    | <ul> <li>3.3. CONSTRUCTION DU MODELE GEOMETRIQUE</li> <li>3.3.1.Principe</li> <li>3.3.2.Discrétisation de la topographie</li> <li>3.3.3.Création des couches aquifères</li></ul> | 53<br>53<br>54<br>56<br>56 |
|    | 3.4. RESULTATS                                                                                                                                                                   | 60                         |

| 4. | Constr                                                                                                                                | uction et calage du modèle numérique                                                                                                                                   | 63                                                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|    | 4.1. GE<br>4.1                                                                                                                        | OMETRIE DU MODELE<br>1.Cotes topographiques et maillage                                                                                                                | 63<br>63                                                                                              |
|    | 4.1<br>4.1                                                                                                                            | .2.Epaisseurs des couches<br>.3.Limites verticales                                                                                                                     | 63<br>64                                                                                              |
|    | 4.2. ME<br>4.2                                                                                                                        | THODE DE CALAGE DU MODELE NUMERIQUE                                                                                                                                    | 65<br>65                                                                                              |
|    | 4.2<br>4.2                                                                                                                            | .2.Calage de l'hydrodynamique en régime transitoire                                                                                                                    | 68<br>69                                                                                              |
|    | 4.3. RE<br>4.3                                                                                                                        | SULTATS DU CALAGE DU MODELE NUMERIQUE<br>1.Perméabilités calées                                                                                                        | 70<br>70                                                                                              |
|    | 4.3<br>4.3                                                                                                                            | .2.Piézométrie simulée en juin 2002<br>.3.Emmagasinement et porosités calés                                                                                            | 73<br>75                                                                                              |
|    | 4.3<br>4.3                                                                                                                            | .4. Historiques de charge<br>.5. Historiques de débit aux stations de jaugeage                                                                                         | 76<br>80                                                                                              |
|    | 4.3<br>4.3                                                                                                                            | .6.Historiques de salure<br>.7.Cartes de concentration observées et simulées en 2004                                                                                   | 80<br>81                                                                                              |
|    | 10                                                                                                                                    | O Calavil du tannana da ablammaa dana la nanna                                                                                                                         | 90                                                                                                    |
|    | 4.3<br>4.3                                                                                                                            | .9. Conclusions sur le calage                                                                                                                                          | 80<br>88                                                                                              |
| 5. | 4.3<br>4.3<br><b>Scénar</b>                                                                                                           | .8. Calcul du tonnage de chlorures dans la nappe<br>.9. Conclusions sur le calage<br>ios d'exploitation                                                                | 88<br><b>91</b>                                                                                       |
| 5. | 4.3<br>4.3<br><b>Scénar</b><br>5.1. SC<br>5.1<br>5.1<br>5.1                                                                           | .9. Conclusions sur le calage<br>ios d'exploitation<br>ENARIO TENDANCIEL<br>1. Définition du scénario<br>2. Cartes simulées en 2014<br>3. Suite du scénario tendanciel | 88<br>91<br>91<br>91<br>92<br>93                                                                      |
| 5. | 4.3<br>4.3<br><b>Scénar</b><br>5.1. SC<br>5.1<br>5.1<br>5.2. SC<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2                      | <ul> <li>B. Calcul du tonnage de chlorures dans la nappe</li></ul>                                                                                                     | 88<br>91<br>91<br>91<br>92<br>93<br>95<br>95<br>96<br>98<br>. 100<br>. 102                            |
| 5. | 4.3<br>4.3<br><b>Scénar</b><br>5.1. SC<br>5.1<br>5.1<br>5.2. SC<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2 | <ul> <li>B. Calcul du tonnage de chlorures dans la nappe</li></ul>                                                                                                     | 88<br>91<br>91<br>91<br>92<br>93<br>95<br>95<br>95<br>98<br>. 100<br>. 102<br>. 104<br>. 104<br>. 105 |

| 5.5. SCENARIO 2              |     |
|------------------------------|-----|
| 5.5.1.Définition du scénario |     |
| 5.5.2.Nouvelles données      |     |
| 5.5.3.Résultats              | 111 |
| 6. Conclusions               | 121 |
| 7. Bibliographie             | 125 |

### Liste des figures

| Figure 1 - Points de suivi de la piézométrie et carte de situation observée le 20 juin 2002                                                                                                                                       | 18 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2 – Représentation discrétisée du réseau de rivières et canaux avec stations de<br>jaugeage prises en compte                                                                                                               | 20 |
| Figure 3 – Points de réalimentation de l'III et du canal de la Hardt                                                                                                                                                              | 25 |
| Figure 4 – Réseau de drains pris en compte dans le modèle                                                                                                                                                                         | 26 |
| Figure 5 – Zoom sur les drains individualisés : Wittelsheim, Richwiller et Joseph Else Est                                                                                                                                        | 28 |
| Figure 6 – Zones hydro-climatiques et stations météo                                                                                                                                                                              | 30 |
| Figure 7 - Carte de concentration en chlorures en 1991 (mg/L) - couche 1                                                                                                                                                          | 38 |
| Figure 8 - Carte de concentration en chlorures en 1991(mg/L) - couche 2                                                                                                                                                           | 39 |
| Figure 9 - Carte de concentration en chlorures en 1991 (mg/L) - couche 3                                                                                                                                                          | 40 |
| Figure 10 – Localisation des points de suivi de la salure                                                                                                                                                                         | 41 |
| Figure 11 – Carte morphologique de la plaine rhénane                                                                                                                                                                              | 44 |
| Figure 12 – Coupe-type des alluvions rhénanes (d'après LGRB)                                                                                                                                                                      | 45 |
| Figure 13 – Coupe géologique du puits de fixation Marie-Louise 2                                                                                                                                                                  | 47 |
| Figure 14 – Caractéristiques de la couche 1 (alluvions récentes)                                                                                                                                                                  | 49 |
| Figure 15 – Caractéristiques de la couche 2 (alluvions anciennes supérieures)                                                                                                                                                     | 50 |
| Figure 16 – Caractéristiques de la couche 3 (alluvions anciennes inférieures)                                                                                                                                                     | 51 |
| Figure 17 – Corrélation entre transmissivité et débit spécifique dans l'aquifère rhénan (données de la Banque Régionale de l'Aquifère Rhénan)                                                                                     | 52 |
| Figure 18 – Exemple de profil Ouest-Est à travers le modèle géométrique                                                                                                                                                           | 53 |
| Figure 19 – Topographie en courbes de niveau de la zone d'étude (équidistance : 1m) -<br>A noter, le relief important représenté par la colline de Pfastaff et le léger relief<br>engendré par le dôme diapirique de Hettenschlag | 55 |
| Figure 20 – Rôle du substratum dans la construction du modèle géométrique – a) avec un affaissement se propageant depuis la couche 1 – b) avec le substratum de la BRAR                                                           | 57 |

| Figure 21 – Carte des affaissements miniers déduits de la différence entre la topographie MDPA 2003 et la topographie de l'IGN | 59  |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 22 – Modèle géométrique (maille de 500 m)                                                                               | 61  |
| Figure 23 – Maillage sur fond de la topographie                                                                                | 64  |
| Figure 24 – Perméabilités de la couche 1 (en 10 <sup>-3</sup> m/s)                                                             | 71  |
| Figure 25 - Perméabilités de la couche 2 (en 10 <sup>-3</sup> m/s)                                                             | 72  |
| Figure 26 - Perméabilités de la couche 3 (en 10 <sup>-3</sup> m/s)                                                             | 73  |
| Figure 27 – Charges simulées en régime permanent (en m) avec isovaleurs simulées (en bleu) et observées (en rouge)             | 74  |
| Figure 28 – Calage en régime permanent sur la situation de Juin 2002 - Corrélation<br>entre charges observées et simulées      | 75  |
| Figure 29 – Zonation des emmagasinements libres en couche 1 et valeurs en %                                                    | 77  |
| Figure 30 - Zonation des emmagasinements libres en couche 2 et valeurs en %                                                    | 78  |
| Figure 31 - Zonation des emmagasinements libres en couche 3 et valeurs en %                                                    | 79  |
| Figure 32 – Cartes de concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) couche 1                          | 82  |
| Figure 33 – Cartes de concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) couche 2                          | 84  |
| Figure 34 – Cartes de concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) couche 3                          | 85  |
| Figure 35 – Scénario tendanciel – concentrations en 2014 (mg/L) – couche 1                                                     | 92  |
| Figure 36 - Scénario tendanciel – concentrations en 2014 (mg/L) – couche 2                                                     | 92  |
| Figure 37 - Scénario tendanciel – concentrations en 2014 (mg/L) – couche 3                                                     | 93  |
| Figure 38 - Scénario tendanciel - concentrations en 2027 (mg/L) - couche 1                                                     | 94  |
| Figure 39 - Scénario tendanciel – concentrations en 2027 (mg/L) – couche 2                                                     | 94  |
| Figure 40 - Scénario tendanciel - concentrations en 2027 (mg/L) - couche 3                                                     | 95  |
| Figure 41 – Scénario 1 – concentrations en 2014 (mg/L) – couche 1                                                              | 96  |
| Figure 42 - Scénario 1 - concentrations en 2014 (mg/L) - couche 2                                                              | 97  |
| Figure 43 - Scénario 1 - concentrations en 2014 (mg/L) - couche 3                                                              | 97  |
| Figure 44 – Ecarts en mg/L entre concentrations en 2014 calculées avec le scénario tendanciel et avec le scénario 1 (couche 1) | 98  |
| Figure 45 - Ecarts en mg/L entre concentrations en 2014 calculées avec le scénario tendanciel et avec le scénario 1 (couche 2) | 99  |
| Figure 46 - Ecarts en mg/L entre concentrations en 2014 calculées avec le scénario tendanciel et avec le scénario 1 (couche 3) | 99  |
| Figure 47 – Scénario 1 – concentrations en 2027 (mg/L) – couche 1                                                              | 101 |
| Figure 48 - Scénario 1 - concentrations en 2027 (mg/L) - couche 2                                                              | 101 |
| Figure 49 - Scénario 1 - concentrations en 2027 (mg/L) - couche 3                                                              | 102 |

| Figure 50 - Ecarts en mg/L entre concentrations en 2027 calculées avec le scénario<br>tendanciel et avec le scénario 1 (couche 1) | 103 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 51 - Ecarts en mg/L entre concentrations en 2027 calculées avec le scénario tendanciel et avec le scénario 1 (couche 2)    | 103 |
| Figure 52 - Ecarts en mg/L entre concentrations en 2027 calculées avec le scénario tendanciel et avec le scénario 1 (couche 3)    | 104 |
| Figure 53 – Ecarts en mg/L entre concentrations en 2027 calculées avec scénario 1 et avec scénario 1 ter (couche 1)               | 105 |
| Figure 54 - Ecarts en mg/L entre concentrations en 2027 calculées avec scénario 1 et avec scénario 1 ter (couche 2)               | 106 |
| Figure 55 - Ecarts en mg/L entre concentrations en 2027 calculées avec scénario 1 et avec scénario 1 ter (couche 3)               | 106 |
| Figure 56 - Historique des teneurs en chlorures aux puits EBE                                                                     | 109 |
| Figure 57 - Historique des teneurs en chlorures aux puits de Colmar                                                               | 109 |
| Figure 58 – Carte modifiée des concentrations en chlorures en 1991 – couche 2                                                     | 110 |
| Figure 59 - Carte modifiée des concentrations en chlorures en 1991 – couche 3                                                     | 111 |
| Figure 60 – Scénario 2 : concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) - couche 2                        | 113 |
| Figure 61 - Scénario 2 : concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) - couche 3                        | 114 |
| Figure 62 – Evolutions comparées au piézo 3782X0152                                                                               | 115 |
| Figure 63 - Evolutions comparées au piézo 3782X0140                                                                               | 116 |
| Figure 64 - Evolutions comparées au piézo 3786X0087                                                                               | 117 |
| Figure 65 - Evolutions comparées au puits EBE F6                                                                                  | 118 |
| Figure 66 – Evolution au puits EBE F3 – scénario 2 (non simulé au cours du calage)                                                | 119 |
| Figure 67 – Evolution au puits Neuland – scénario 2                                                                               | 119 |
| Figure 68 – Evolution au puits Dornig – scénario 2                                                                                | 119 |

### Liste des tableaux

| Tableau 1 – Traitement des terrils                                                                 | 15 |
|----------------------------------------------------------------------------------------------------|----|
| Tableau 2 – Données hydrologiques disponibles                                                      | 22 |
| Tableau 3 – Soutien d'étiage de l'III (en noir, débit mesuré ; en italique rouge, débit<br>estimé) | 23 |
| Tableau 4 – Pluviométrie moyenne par zone                                                          | 27 |
| Tableau 5 – Pluviométrie moyenne par station Météo                                                 | 27 |
| Tableau 6 – Prélèvements des ouvrages des MDPA (1991-2004)                                         | 32 |

| Tableau 7 – Evolution des chlorures dans les rivières (en mg/L)                                                | 34  |
|----------------------------------------------------------------------------------------------------------------|-----|
| Tableau 8 – Infiltrations sous les terrils en Tonnes de NaCI (source MDPA)                                     | 35  |
| Tableau 9 – Surface occupée par les terrils en hectares (d'après document MDPA)                                | 36  |
| Tableau 10 – Données du modèle géométrique                                                                     | 54  |
| Tableau 11 – Calcul du tonnage de chlorures dans la nappe en 2004                                              | 88  |
| Tableau 12 – Scénarios d'exploitation du modèle                                                                | 91  |
| Tableau 13 – Pompages non arrêtés en 2014 pour le scénario 1                                                   | 100 |
| Tableau 14 – Calcul du tonnage de chlorures dans la nappe pour le scénario tendanciel         et le scénario 1 | 107 |
| Tableau 15 – Surfaces et volumes de nappe                                                                      | 107 |
| Tableau 16 – Principaux scénarios d'exploitation du modèle                                                     | 121 |

#### Liste des annexes

| Annexe 1 Débits mensuels aux stations de jaugeage                                         | 127   |
|-------------------------------------------------------------------------------------------|-------|
| Annexe 2 Calage de l'hydrodynamique : historiques de charge                               | 133   |
| Annexe 3 Calage de l'hydrodynamique : historiques de débit aux stations de jaugeage       | 141   |
| Annexe 4 Calage du transport : historiques de salure aux piézomètres et puits de fixation | . 145 |
| Annexe 5 Evolution des pompages et définition du scénario tendanciel                      | 159   |

### 1. Introduction

La pollution saline issue principalement des terrils des Mines de potasse d'Alsace (MDPA) affecte une grande part du département du Haut-Rhin. Si la situation des tranches superficielles de l'aquifère montre une tendance générale à l'amélioration suite aux travaux de fixation et de dépollution des sources mises en œuvre par les MDPA avec le concours financier de l'Agence de l'eau Rhin-Meuse, des interrogations subsistent sur la salure des couches profondes de la nappe et sur son évolution future.

Il est donc utile de pouvoir disposer d'un modèle de gestion permettant de simuler l'évolution de la salure tant en surface qu'en profondeur et d'évaluer l'impact de différents scénarios d'arrêt de pompages ou de mise en place de barrages de dépollution, pour apporter une aide à la décision.

Les utilisations d'un tel modèle de gestion sont multiples, et comprennent notamment :

- Prévoir l'évolution à long terme de la salure de la nappe (objectif patrimonial de la Région Alsace et de l'Agence de l'eau Rhin-Meuse),
- Tester des scénarios de pompages en nappe afin de définir un programme de dépollution de la nappe pour qu'elle redevienne potable sans traitement (objectif du SDAGE et du SAGE III-Rhin-nappe ainsi que des prescriptions de la DRIRE Alsace aux MDPA).

Le présent projet de modélisation a été lancé dans cet objectif en 2003 par le BRGM avec le concours financier de la Région Alsace, de l'Agence de l'eau Rhin-Meuse et des MDPA, en prolongation d'un modèle multicouche prototype construit en 1998.

Le nouveau modèle de la salure de la nappe d'Alsace mis au point dans le cadre de cette étude permet de simuler l'hydrodynamique du système aquifère et le transport de chlorures au sein de ce système. La construction d'un tel modèle passe nécessairement par différentes étapes, brièvement résumées ci-après, qui seront détaillées dans la suite du rapport :

- la **collecte des données d'entrée et de calage** du modèle (prélèvements, données hydroclimatiques pour l'estimation de la recharge, données hydrologiques telles que les débits des rivières, historiques de charges, de concentrations, d'infiltrations sur les terrils, etc);
- la synthèse hydrogéologique des connaissances, en particulier la stratigraphie des formations rencontrées dans l'emprise de la zone d'étude, permettant de définir l'extension horizontale et verticale de ces différentes formations et leurs caractéristiques hydrogéologiques (aptitudes des formations contenues dans le domaine à l'écoulement et au stockage de l'eau souterraine);
- la définition d'un **modèle hydrogéologique conceptuel** des écoulements, c'est-àdire une représentation simplifiée des écoulements réels au sein du domaine d'étude ; cette représentation doit être suffisamment proche de la réalité pour

restituer correctement les phénomènes à étudier et suffisamment schématisée pour pouvoir être utilisée en entrée d'un code de modélisation hydrodynamique, lequel va résoudre les équations de l'écoulement et du transport pour diverses « sollicitations » qui sont les interactions, variables dans le temps, avec le milieu extérieur au domaine ; ces interactions sont des « entrées » (infiltration de la pluie, flux entrant aux limites du domaine, alimentation par le réseau hydrographique, infiltrations sur les terrils...) ou des « sorties » (prélèvements par pompage AEP, industriels, agricoles, dépollution/fixation, flux sortant aux limites, drainage par le réseau hydrographique...) ;

- la résolution des équations de l'écoulement et du transport passe par la « discrétisation » du domaine d'étude, c'est-à-dire son découpage dans les 3 dimensions, en petits éléments, ou « mailles », dans lesquels on fait l'hypothèse que les différents paramètres physiques sont homogènes pour chaque maille, alors qu'ils sont hétérogènes à l'échelle de l'ensemble du domaine d'étude ; cette discrétisation des paramètres et la création de la base de données correspondante, au format lisible par le code hydrodynamique choisi résulte en un modèle numérique des écoulements pour le domaine d'étude considéré ;
- une fois « calé » (calibré) sur des situations réellement observées, le modèle numérique peut être utilisé comme un outil de prévision et de gestion pour tester les impacts sur le milieu aquifère de différents scénarios hypothétiques Le « calage » du modèle numérique qui consiste à estimer aussi précisément que possible les paramètres physiques non directement accessibles à la mesure (perméabilité et coefficient d'emmagasinement des couches aquifères, coefficients d'échange avec la rivière, vitesses de transport...etc...) constitue l'étape la plus importante et la plus délicate dans la mise au point d'un modèle tel que celui de la salure.

Le code utilisé dans cette étude est le progiciel MARTHE du BRGM (Thiéry, 1995), qui est un outil très complet de modélisation 3D aux différences finies, applicable aux milieux poreux équivalents et pouvant traiter des configurations aquifères variées, des plus simples aux plus complexes. Il permet en particulier de traiter les interactions dynamiques entre un système aquifère stratifié à plusieurs couches et un réseau hydrographique superficiel (rivières et/ou canaux). Il est capable de gérer la disparition partielle de certaines couches et il est très robuste vis-à-vis des problèmes de dénoyage qui se présentent parfois lorsque l'épaisseur des couches devient faible, ce qui est le cas dans le bassin potassique.

### 2. Etat des connaissances et données recueillies

#### 2.1. CONTEXTE HYDROGEOLOGIQUE

La zone modélisée couvre le secteur de la nappe d'Alsace allant de Mulhouse en amont à Colmar en aval, et des coteaux vosgiens à l'ouest jusqu'au Rhin, pris en compte dans la modélisation, à l'est.

L'ensemble du secteur fait partie du domaine géologique de la plaine du Rhin où affleurent les alluvions quaternaires qui reposent sur un substratum marneux d'âge oligocène. Les alluvions sont constituées d'un mélange de sables, galets et graviers pouvant être entrecoupés de niveaux argileux d'extension et d'épaisseur variables.

Le secteur se subdivise en deux parties d'importance hydrogéologique inégale :

- à l'est de l'III, l'épaisseur de l'aquifère augmente régulièrement du sud vers le nord et passe d'une vingtaine de mètres au nord de Mulhouse à plus de 200 m à hauteur de Neuf-Brisach, avec une remontée du substratum le long de l'III, au nord d'Ensisheim, liée à des phénomènes de diapirisme, marqués par la crête de Meyenheim et le dôme de Hettenschlag;
- à l'ouest de l'III, la puissance des sédiments aquifères, de 80 m environ en bordure de l'III, diminue régulièrement en direction des Vosges ; elle est comprise entre 20 et 30 m dans le secteur du Bassin Potassique (BP) au nord-ouest de Mulhouse, qui se caractérise par un relief tourmenté du substratum tertiaire entaillé par une succession de dépressions bordées de crêtes.

Le réseau hydrographique, complexe, comprend le Rhin, doublé par le grand canal d'Alsace, pratiquement déconnecté de la nappe, la Fecht, l'III et ses affluents la Lauch, la Thur, la Vieille-Thur et la Doller, les canaux (Vauban, Widensolen, Hardt, Rhône au Rhin, Huningue) ainsi qu'un réseau de drains assez superficiels.

Les apports à la nappe sont constitués par la recharge, des infiltrations à partir du réseau hydrographique et des flux venant des coteaux situés aux limites sud et ouest du modèle.

Les exhaures correspondent aux pompages AEP, AEI et pour la zone du BP aux prélèvements des puits de fixation/dépollution implantés au voisinage des terrils. On en connaît les variations annuelles.

#### 2.2. CONTEXTE DE LA SALURE

La potasse est exploitée depuis le début du siècle dans le Bassin Potassique (BP) situé dans la partie sud-ouest de la zone d'étude ; les sous-produits d'exploitation sont constitués par des stériles et du chlorure de sodium, déposés en terrils sur les

alluvions perméables ou rejetés en rivières (Thur et Vieille-Thur) jusqu'en 1975 ; à partir de cette date, les saumures sont rejetées exclusivement dans le saumoduc créé en 1934 pour évacuer le sel vers le Rhin à hauteur de Fessenheim.

La pollution provoquée par la dissolution du sel des terrils par la pluie se traduit par deux langues salées distinctes dont la configuration est la suivante depuis le début des années 1990 : la langue Est (issue principalement des terrils Joseph Else, Amélie, Anna, Fernand) est d'abord orientée ouest-est puis présente une variation d'azimut rapide vers le nord - nord-est, parallèle à la langue Ouest issue des terrils Marie-Louise, Alex et Rodolphe.

La source initiale de la contamination saline est donc essentiellement constituée par les terrils des MDPA qui ont été alimentés par des dépôts de résidus salés jusqu'à la fin des années 50 et de résidus insolubles peu salés ensuite. L'origine de la salure de l'aquifère, pour sa part, résulte des processus de dissolution du sel des terrils par la pluie, depuis le début de l'exploitation de la potasse d'Alsace. Ces caractéristiques de l'origine superficielle de la salure conduisent à distinguer deux zones d'intérêt quant à la modélisation du réservoir et à l'analyse des données expérimentales :

- le domaine du Bassin Potassique, qui inclut les terrils et les processus d'infiltration, avec des concentrations locales maximales ;
- le domaine des langues aval dans lequel se manifestent principalement des mécanismes de transfert et de dispersion liés à l'hétérogénéité du champ de vitesse. Dans ce domaine, hors des sources principales d'apport, les concentrations du fluide sont nettement plus faibles. Les seules sources de salure secondaires présentes, de plus faible amplitude, sont constituées par l'infiltration due aux échanges nappe-rivières.

Au sein du Bassin Potassique, les quinze terrils principaux constituant les sources superficielles de contamination s'organisent en sept secteurs, dont le suivi périodique détaillé fait l'objet des rapports annuels de surveillance et de synthèse de la salure rédigés par le BRGM :

- Alex et Rodolphe ;
- Marie-Louise ;
- Amélie I, II et nord ;
- Joseph Else est et ouest ;
- Anna et Fernand ;
- Théodore et Eugène ;
- Ensisheim nord, est et ouest.

Aujourd'hui tous ces terrils sont soit traités soit en cours de traitement, les plus salés font l'objet d'une dissolution accélérée avec collecte des eaux salées par un fossé de ceinture et les puits de fixation, les moins salés sont équipés d'une couverture étanche végétalisée voire simplement végétalisés (*cf.* tableau 1).

| Dénomination             | Date<br>d'édification | Date d'arrêt<br>des dépôts | Opérations en cours ou prévues<br>sur les terrils              |  |  |  |
|--------------------------|-----------------------|----------------------------|----------------------------------------------------------------|--|--|--|
| ALEX bassin à boues      | 1923                  | 1963                       | Non traité                                                     |  |  |  |
| ALEX Terril ancien       | 1913                  | 1933                       | Dissolution accélérée                                          |  |  |  |
| ALEX Terril mixte        | 1913                  | 1969                       | Dissolution accélérée                                          |  |  |  |
| RODOLPHE                 | 1930                  | 1976                       | Dissolution accélérée partielle<br>Etanchement -Végétalisation |  |  |  |
| MARIE-LOUISE             | 1920                  | 1999                       | Dissolution accélérée partielle                                |  |  |  |
| AMELIE Nord              | 1924                  | 2002                       | Dissolution accélérée partielle                                |  |  |  |
| AMELIE Est               | 1913                  | 1929                       | Transféré sur Amélie Nord                                      |  |  |  |
| AMELIE II                | 1913                  | 1953                       | Etanchement-végétalisation                                     |  |  |  |
| JOSEPH-ELSE Ouest        | 1912                  | 1969                       | Etanchement-végétalisation                                     |  |  |  |
| JOSEPH-ELSE Est          | 1959                  | 1969                       | Dissolution accélérée                                          |  |  |  |
| ANNA                     | 1923                  | 1974                       | Dissolution accélérée                                          |  |  |  |
| FERNAND                  | 1913                  | 1968                       | Dissolution accélérée                                          |  |  |  |
| EUGENE                   | 1960                  | 1986                       | Etanchement-végétalisation                                     |  |  |  |
| THEODORE                 | 1913                  | 1959                       | Dissolution accélérée                                          |  |  |  |
| ENSISHEIM Ouest          | 1920                  | 1975                       | Etanchement-végétalisation                                     |  |  |  |
| ENSISHEIM bassin à boues | 1932                  | 1964                       | Non traité                                                     |  |  |  |
| ENSISHEIM Est            | 1923                  | 1932                       | Dissolution accélérée                                          |  |  |  |
| ENSISHEIM Nord           | 1926                  | 1961                       | Végétalisation                                                 |  |  |  |

#### Tableau 1 – Traitement des terrils

Pour compléter le recensement des sources connues de salure, il convient d'ajouter une dernière composante de plus faible amplitude localisée en amont du Bassin Potassique (sud-ouest du domaine modélisé). Au débouché de la vallée de la Thur, la nappe est contaminée par les terrils industriels de l'Ochsenfeld. Les sous-produits des processus industriels engendrent, entre autres éléments, des concentrations excessives en chlorures. Les dispositifs de dépollution, mis en place en 1974, limitent l'impact à une langue étroite (200 mg Cl/l) qui vient rejoindre la pollution issue des terrils du Bassin Potassique. Cette pollution devrait cesser à partir de 2005 suite à la mise en place d'une paroi étanche.

Toutes ces sources de salure connues et prise en compte dans la modélisation sont des sources anthropiques bien identifiées. Il n'est pas exclu qu'il existe aussi des sources naturelles telles que des remontées de saumure par des failles ou des phénomènes de dissolution de diapirs de sel, mais elles n'ont pas été clairement identifiées pour l'instant. L'hypothèse d'une source de salure naturelle entre Raedersheim et Ungersheim sera explorée dans un des scénarios d'exploitation du modèle.

#### 2.3. RAPPEL DES TRAVAUX ANTERIEURS

Le BRGM avec ses différentes implantations (SGR Alsace et centre technique d'Orléans) a participé à différents projets transfrontaliers en partenariat avec les Allemands et parfois les Suisses :

- de 1993 à 1996, programme communautaire LIFE de modélisation hydrodynamique de la nappe d'Alsace à l'échelle régionale (hydrodynamique 2D seulement) sous maîtrise d'ouvrage de la LfU du Bade-Wurtemberg et de la Région Alsace ;
- de 1993 à 1996, programme communautaire INTERREG 1 de cartographie hydrogéologique transfontalière du fossé du Rhin supérieur (maîtrise d'ouvrage LfU & Région Alsace);
- à partir de 1996, programme INTERREG 2 pour l'inventaire de la qualité des eaux souterraines dans la même zone (maîtrise d'ouvrage : Région Alsace, partenaires étrangers : Land et LfU du Bade-Wurtemberg, cantons de Bâle-Ville et de Bâle-Campagne).

A l'occasion de ces projets, la Banque Régionale de l'Aquifère Rhénan (BRAR) base de données gérée pour le compte de la Région Alsace par le BRGM a été mise en place et différentes campagnes de reconnaissance géophysique ainsi que d'analyses géochimiques et isotopiques ont été menées, avec une importante participation du BRGM.

Un projet de développement de la Direction de la Recherche du BRGM (Noyer *et al.*, 1998) a permis de mettre au point, dans la même zone géographique, un premier véritable modèle multicouche de l'écoulement de la nappe des alluvions quaternaires ainsi que du transport de la salure issue des terrils du Bassin Potassique.

Ce modèle était un prototype, basé sur une discrétisation spatiale horizontale relativement grossière avec une maille uniforme de 500 m héritée du modèle LIFE ; par ailleurs, la discrétisation verticale en 3 couches correspondait à des connaissances encore incomplètes sur la topographie, le substratum marneux et la stratigraphie des alluvions.

Bien qu'insuffisamment précis, ce premier modèle de transport avait cependant permis des avancées non négligeables par rapport aux tentatives précédentes de modélisation avec en particulier, la restitution de trajectoires suivant correctement la forme des langues salées, y compris la variation brutale d'azimut de la langue Est.

Depuis cette modélisation, de nouvelles connaissances ont été acquises sur la stratigraphie des alluvions en exploitant les nouvelles données issues de travaux variés, en particulier : nouveaux forages des MDPA, campagnes géophysiques, cartes des formations superficielles de la BRAR.

La description des nouvelles données géologiques et géophysiques ainsi que la méthode de construction du nouveau modèle conceptuel (hydrogéologique) sont présentées au chapitre 3.

#### 2.4. DONNEES POUR L'HYDRODYNAMIQUE

Ce paragraphe est destiné à recenser et décrire les données qui ont servi au calage de l'hydrodynamique, en régimes permanent et transitoire. Certaines de ces données provenaient des travaux antérieurs. D'autres ont été acquises dans le cadre de cette étude.

Les études antérieures ont montré que la nappe d'Alsace est en interaction forte avec le réseau hydrographique (Rhin, rivières, canaux, drains). Les interactions dynamiques entre aquifère et réseau hydrographique doivent donc être soigneusement prises en compte dans la modélisation. Par conséquent, il faut recueillir les données propres à ce réseau.

Les autres données nécessaires sont les données de prélèvement, les données hydroclimatiques pour le calcul de la recharge et bien évidemment les données piézométriques sous la forme de carte et de chroniques.

#### 2.4.1. Données piézométriques

#### a) Carte

Lors de l'étude de 1998, le calage de l'hydrodynamique avait été effectué en régime permanent sur la situation de Moyennes Eaux (ME) du 20 octobre 1986 puis en régime transitoire au pas de temps mensuel, sur 5 ans, entre la situation de ME d'octobre 1986 et la situation de Basses Eaux (BE) du 9 septembre 1991, incluant la situation de Hautes Eaux (HE) du 11 avril 1988.

Pour la nouvelle étude, le Comité de Pilotage a demandé que le calage en régime permanent soit effectué sur une situation plus récente ; c'est la situation, considérée comme de ME, du 20 juin 2002 qui a été retenue. La carte de la piézométrie observée a donc été établie à partir des mesures des réseaux APRONA et MDPA.

#### b) Chroniques

Les chroniques de charge mesurée sur une vingtaine de piézomètres répartis dans l'emprise du modèle ont été utilisées pour caler le modèle en régime hydrodynamique transitoire seul sur 14 années, soit de janvier 1978 à décembre 1991 puis sur 13 années complémentaires de 1991 à 2004 au cours du calage du transport. Ces chroniques ont été obtenues par extraction de la Banque de Données du Sous-sol du BRGM ou auprès de l'APRONA.



Figure 1 - Points de suivi de la piézométrie et carte de situation observée le 20 juin 2002

La plupart des chroniques sont disponibles sur la totalité de la période, excepté celles qui correspondent à des points de suivi des MDPA, implantés récemment (après 2000) dans le Bassin Potassique.

La figure 1 présente la localisation de ces points de suivi de la piézométrie sur fond de carte observée de la situation du 20 juin 2002.

#### 2.4.2. Données du réseau hydrographique

#### a) Caractéristiques des rivières et canaux

La figure 2 présente le réseau des rivières et canaux pris en compte. Une première remarque s'impose : étant donné ce que l'on sait sur le sens d'écoulement de la nappe et au vu de l'objectif de l'étude, axé sur l'évolution des langues salées, on aurait pu

concevoir de ne modéliser que la partie Ouest du modèle. Cette option n'a pas été retenue du fait de la difficulté de définir une condition à la limite Est autre que celle imposée par le Rhin et ses fluctuations.

Le réseau hydrographique pris en compte dans le modèle comprend donc les rivières de la partie Ouest du modèle, le Rhin et les principaux canaux, plus les drains. Les canaux sont traités comme des rivières, les drains qui ne peuvent pas infiltrer la nappe sont traités différemment. Les rivières et canaux peuvent au cours de la simulation soit alimenter soit drainer la nappe.

Pour le calcul des interactions dynamiques avec l'aquifère, Il faut d'abord établir l'arborescence et la hiérarchisation, c'est-à-dire les connexions d'amont en aval entre chaque tronçon de rivière et ses affluents (fig. 2).

Ensuite, les rivières et canaux doivent être représentés dans chaque maille du modèle où ils sont présents, à l'aide des paramètres suivants :

- longueur dans la maille ;
- largeur dans la maille ;
- cote du fond dans la maille ;
- cote de la ligne d'eau dans la maille ;
- épaisseur de colmatage du lit dans la maille;
- perméabilité de colmatage du lit dans la maille ;
- rugosité dans la maille.

Les paramètres géométriques (longueur, largeur, cote du fond) ont été fournis par l'APRONA pour la modélisation de 1998. Ils ont été repris et adaptés à la nouvelle taille des mailles.

Pour la cote de la ligne d'eau, on disposait des 3 situations de ME, HE et BE du modèle précédent. On a repris ici les valeurs de la situation de ME de 1986, faute de données pour la situation de juin 2002. On verra au chapitre traitant du calage que cette imprécision n'aura pas d'impact important puisqu'on a effectué le calage en régime transitoire.



Figure 2 – Représentation discrétisée du réseau de rivières et canaux avec stations de jaugeage prises en compte

Les 3 derniers paramètres (épaisseur et perméabilité de colmatage du lit, rugosité) doivent être ajustés au cours du processus de calage.

Enfin il est nécessaire de disposer des débits des cours d'eau aux entrées dans le modèle ainsi que des éventuels prélèvements (par exemple défluences comme celle de la Vieille-Thur sur la Thur).

A l'époque où les données ont été collectées, les paramètres ci-dessus ont pu être définis avec une bonne précision pour le Rhin et les rivières de l'Ouest, y compris pour les débits aux stations de jaugeage qui sauf pour le Rhin sont suivies par la DIREN.

Par contre, en ce qui concerne les canaux, les données ci-dessus ne sont pas connues pour l'ensemble du réseau : de nombreux tronçons répertoriés sur divers documents n'ont pas pu être pris en compte (Muhlbach, Thierbach, les dérivations du canal de la Hardt telles que Munchhouse etc). Par ailleurs, les données aux stations de mesure suivies par la DDAF ne semblent pas aussi facilement accessibles que celles des stations suivies par la DIREN.

Pour la modélisation, on a donc disposé de données avec des degrés de précision différents :

- pour le Rhin et les rivières de l'Ouest : bonne définition de la géométrie et des débits d'entrée au pas de temps mensuel ;
- pour les canaux : définition moins précise, omission de certains tronçons, méconnaissance des fluctuations aux points d'entrée dans la plupart des cas : des valeurs moyennes ont été retenues.

Etant donné que à l'échelle régionale, la nappe est bien évidemment plus fortement contrainte par la condition à la limite liée au Rhin que par le fonctionnement des canaux, les omissions et imprécisions sur les paramètres des canaux ne peuvent pas influencer les écoulements suffisamment pour que cela modifie le comportement dans la partie du modèle qui nous intéresse dans le cadre de cette étude, celle des langues salées.

Cependant, suite à la demande présentée lors de la réunion du Comité de Pilotage du 27 avril 2005, les informations acquises sur la mise en eau périodique du canal de la Hardt ont été intégrées dans la modélisation.

#### b) Données hydrologiques

Pour l'étude de 1998, les données suivantes avaient été acquises :

- des historiques de débit sur 20 ans environ depuis 1975 sur 9 stations de jaugeage obtenues par interrogation de la banque HYDRO (fig. 2); sur les 9 stations, 5 servent à caractériser les débits d'entrée des rivières dans le modèle, il s'agit de Didenheim sur l'III, Masevaux sur la Doller, Willer sur la Thur, Ungersheim sur la Vieille-Thur (défluence de la Thur) et Guebwiller sur la Lauch; les 4 autres sont utilisées comme points de contrôle du calage, il s'agit de Staffelfelden sur la Thur, Ensisheim, Oberhergheim et Colmar sur l'III;
- les débits moyens mensuels du Rhin de janvier 1975 à mars 1998 à la station de Kembs (entrée du Rhin dans le modèle) et des informations sur les canaux fournis par le Service de la Navigation de Strasbourg et par la DDAF du Haut-Rhin.

Pour la présente étude, il a fallu acquérir les données complémentaires en tous ces points, au pas de temps mensuel, jusqu'en 2004 puisque le Comité de Pilotage a demandé, lors de sa réunion du 27 avril 2005 que le calage soit réalisé jusqu'à cette date. Pour les points de contrôle, on a pris en compte une station supplémentaire : Reiningue sur la Doller. Le tableau 1 résume les caractéristiques des séries recueillies.

| Points d'entrée dans le modèle    |               |                   |  |  |  |  |  |  |
|-----------------------------------|---------------|-------------------|--|--|--|--|--|--|
| Rivière Station Période           |               |                   |  |  |  |  |  |  |
| =                                 | Didenheim     | 01/1978 à 05/2005 |  |  |  |  |  |  |
| Doller                            | Masevaux      | 01/1978 à 07/1999 |  |  |  |  |  |  |
|                                   | Lauw          | 08/1999 à 04/2005 |  |  |  |  |  |  |
| Thur                              | Willer/Thur   | 01/1978 à 05/2005 |  |  |  |  |  |  |
| Lauch                             | Guebwiller    | 01/1978 à 05/2005 |  |  |  |  |  |  |
| Vieille-Thur                      | Ungersheim    | 01/1978 à 12/2000 |  |  |  |  |  |  |
| Rhin                              | Kembs         | 01/1978 à 12/2003 |  |  |  |  |  |  |
|                                   |               |                   |  |  |  |  |  |  |
| Points de                         | contrôle du d | calage            |  |  |  |  |  |  |
| Rivière                           | Station       | Période           |  |  |  |  |  |  |
| 111                               | Ensisheim     | 01/1978 à 12/2003 |  |  |  |  |  |  |
|                                   | Oberhergheim  | 01/1978 à 09/2000 |  |  |  |  |  |  |
|                                   | Colmar        | 01/1978 à 12/2003 |  |  |  |  |  |  |
| Thur Staffelfelden 01/1978 à 04/2 |               |                   |  |  |  |  |  |  |
| Doller                            | Reiningue     | 01/1978 à 12/2003 |  |  |  |  |  |  |

Tableau 2 – Données hydrologiques disponibles

On présente en annexe 1 les données brutes de chacune de ces séries obtenues par interrogation de la banque HYDRO (sauf pour le Rhin dont les données ont été obtenues du Service de la Navigation de Strasbourg sous forme de document papier seulement).

Les graphiques en annexe et le tableau 2 montrent que la période de recueil ne va pas jusqu'en fin 2004 pour certaines séries, soit parce que les données n'étaient pas présentes dans la banque HYDRO au moment du recueil (Ungersheim, Oberhergheim, Staffelfelden), soit parce qu'on n'a pas pu les obtenir à temps (année 2004 pour les débits du Rhin à Kembs).

Pour le traitement de ces données, il faut distinguer deux cas :

points d'entrée dans le modèle : les valeurs mensuelles doivent être disponibles pour toute la période de calage ; lorsque des valeurs sont absentes en petit nombre, il faut les interpoler en se basant sur l'examen des chroniques aval sur la même rivière et en testant les corrélations entre les séries, par exemple les valeurs de l'III à Didenheim sont comparées à celles de l'III à Ensisheim (les graphiques en annexe 1 montrent que les 2 séries sont fortement corrélées). Un problème s'est posé pour la station d'Ungersheim qui n'est plus suivie à partir de janvier 2001 ; comme les débits mesurés sont faibles et en décroissance régulière et que, de plus, cette station est à l'aval du Bassin Potassique qui est la zone sensible pour notre propos, on a considéré qu'on pouvait répéter les valeurs de l'année 2000 jusqu'à fin 2004 ;

on a également répété les valeurs de 2003 pour estimer les débits 2004 manquants du Rhin à Kembs ;

- **points de contrôle du calage** : dans ce cas, il n'est pas nécessaire de compléter les séries ; on se contente de caler sur les points observés.

Au cours de sa réunion du 27 avril 2005, le Comité de Pilotage a demandé la prise en compte d'éléments complémentaires qui avaient été omis dans les premiers calculs faute d'information :

- la réalimentation de l'III par le Rhin (environ 4 m<sup>3</sup>/s prélevés sur le canal de Huningue pour soutenir l'étiage de l'III depuis les à secs des années 90);
- les fluctuations saisonnières de l'alimentation du canal de la Hardt qui n'est mis en eau qu'en été et pour lequel une alimentation moyenne en continu avait été considérée, comme pour les autres canaux pris en compte dans le modèle (cf § 2.4.2.a ci-dessus).

L'historique des débits d'alimentation du canal de la Hardt a pu être collecté auprès de la DDAF. Par contre le détail de la réalimentation de l'III depuis 1997 n'a pu être totalement obtenu. Le tableau 3 de synthèse ci-après a été construit d'après les informations obtenues et validé par la DIREN, la DDAF et le Conseil Général.

Les recherches menées ont conduit à considérer le schéma d'alimentation décrit à la figure 3 pour l'III et pour le canal de la Hardt. On considère que le canal est alimenté essentiellement par 2 prises d'eau : l'une sur le canal de Huningue et l'autre sur le Grand Canal à Ottmarsheim.

Auparavant, dans les calculs, on n'avait considéré que la prise sur le canal de Huningue avec une alimentation moyenne uniforme de 13 m<sup>3</sup>/s résultant du calage du modèle précédent, valeur qui apparaît cohérente avec les nouvelles données. Ces nouvelles informations sont prises en compte dans la suite des calculs et du calage.

| Débits de soutien d'étiage de l'III (en m3/s) |      |      |      |     |     |      |      |      |      |     |     |     |
|-----------------------------------------------|------|------|------|-----|-----|------|------|------|------|-----|-----|-----|
| An/mois                                       | janv | févr | mars | avr | mai | juin | juil | août | sept | oct | nov | déc |
| 1997                                          | 0.0  | 0.0  | 0.0  | 0.0 | 3.0 | 3.0  | 3.0  | 3.0  | 3.0  | 0.5 | 0.5 | 0.5 |
| 1998                                          | 0.5  | 0.5  | 0.5  | 2.0 | 1.7 | 1.8  | 1.7  | 1.8  | 1.9  | 1.7 | 1.3 | 0.1 |
| 1999                                          | 0.5  | 0.5  | 1.2  | 1.1 | 0.8 | 0.5  | 0.4  | 0.3  | 1.0  | 1.1 | 2.0 | 2.1 |
| 2000                                          | 0.9  | 0.5  | 1.1  | 1.1 | 1.0 | 1.2  | 1.5  | 1.4  | 1.1  | 0.6 | 1.4 | 2.0 |
| 2001                                          | 1.8  | 1.3  | 1.6  | 1.9 | 2.2 | 3.0  | 3.4  | 3.0  | 2.0  | 0.5 | 0.5 | 0.5 |
| 2002                                          | 0.5  | 0.5  | 0.5  | 2.0 | 3.0 | 3.0  | 3.0  | 3.0  | 2.0  | 0.5 | 0.5 | 0.5 |
| 2003                                          | 0.5  | 0.5  | 0.5  | 3.0 | 3.0 | 3.0  | 3.0  | 3.0  | 3.0  | 0.5 | 0.5 | 0.5 |
| 2004                                          | 0.5  | 0.5  | 0.5  | 3.0 | 3.0 | 5.5  | 5.5  | 5.5  | 5.5  | 0.5 | 0.5 | 0.5 |
| 2005                                          | 0.5  | 0.5  | 0.5  | 3.0 | 3.0 | 5.5  |      |      |      |     |     |     |

Tableau 3 – Soutien d'étiage de l'III (en noir, débit mesuré ; en italique rouge, débit estimé)

#### c) Caractéristiques des drains

Les drains qui ne peuvent alimenter l'aquifère sont définis plus simplement que les rivières et canaux, à l'aide des paramètres suivants, dans chaque maille où ils sont présents :

- longueur dans la maille ;
- cote du fond dans la maille ;
- perméabilité d'échange avec la nappe dans la maille.

Le dernier paramètre doit être calé.

On disposait du fichier des drains fournis antérieurement par l'APRONA; il a été complété par les données des MDPA. Les drains souterrains de Wittelsheim et Richwiller situés dans la zone d'affaissements miniers du Bassin Potassique et qui n'avaient pas été pris en compte dans les modélisations précédentes (fig. 4 et 5) ont fait l'objet d'un traitement particulier :

- le drain de Wittelsheim a pu être digitalisé assez précisément d'après les documents d'exécution puis ses altitudes ont été corrigées d'après la topographie actuelle, ce qui a permis de constater qu'il était bien conçu puisqu'il coulait toujours dans le bon sens malgré les affaissements différentiels ;
- les données détaillées sur le drain de Richwiller n'ont pu être retrouvées; cependant, on l'a individualisé au mieux et au même titre que le drain de Wittelsheim en lui attribuant une profondeur maximale de 3 mètres.

L'ensemble du réseau des drains est représenté à la figure 4. Pour leur prise en compte dans le modèle, on a donc distingué 2 catégories :

- les 2 drains de Wittelsheim et Richwiller ainsi que à partir de 1999 le drain qui entoure le terril Joseph Else Est (un fossé de près de 6 mètres de profondeur) dont la perméabilité a fait l'objet d'un calage personnalisé ;
- le reste du réseau de drains, constitué d'un chevelu complexe, pour lequel on a calé des paramètres uniformes moyens.



Figure 3 – Points de réalimentation de l'III et du canal de la Hardt



Figure 4 – Réseau de drains pris en compte dans le modèle

#### 2.4.3. Données hydro-climatiques

En dehors des apports par le réseau hydrographique et les entrées aux limites amont, le système aquifère multicouche est alimenté par la recharge provenant des précipitations. Pour l'étude de 1998, on avait obtenu les données suivantes :

 une carte des hauteurs de précipitations annuelles du bassin Rhin-Meuse (AERM, 1995) ; à partir de cette carte, on avait défini six zones de pluviométrie croissante du Nord-Est au Sud-Ouest du modèle comme indiqué au tableau 4 ; - de longues séries (1960 à 1990 environ) de précipitations, de température et de durée d'insolation sur les stations de Burnhaupt, Mulhouse, Baldersheim et Meyenheim plus quelques informations synthétiques sur celle de Colmar-Inra; les caractéristiques de ces séries sont résumées au tableau 5 (Noyer et al., 1998)

| Numéro de zone | Pluviométrie moyenne annuelle (mm) |
|----------------|------------------------------------|
| 1              | < 500                              |
| 2              | 500 à 600                          |
| 3              | 600 à 700                          |
| 4              | 700 à 800                          |
| 5              | 800 à 900                          |
| 6              | 900 à 1000                         |

Tableau 4 – Pluviométrie moyenne par zone

| Poste       | No de<br>zone | Série<br>complète | Durée<br>(années) | Année<br>moyenne (mm) |
|-------------|---------------|-------------------|-------------------|-----------------------|
| Burnhaupt   | 6             | 1978 à 1991       | 14                | 1045                  |
| Mulhouse    | 4/5           | 1964 à 1992       | 29                | 759                   |
| Baldersheim | 3             | 1960 à 1991       | 32                | 703                   |
| Meyenheim   | 2/3           | 1962 à 1993       | 32                | 573                   |
| Colmar-Inra | 1             | 1972 à 1991       | 20                | 590                   |

Tableau 5 – Pluviométrie moyenne par station Météo

Le numéro de zone indiqué au tableau 5 correspond à la situation géographique des stations par rapport à la première définition des zones d'après la carte de l'AERM. On constate qu'il existe une bonne cohérence entre les tableaux 4 et 5 sauf pour la station





Figure 5 – Zoom sur les drains individualisés : Wittelsheim, Richwiller et Joseph Else Est

Pour la présente étude, on a donc réduit le nombre de zones à 5 en fusionnant les zones 1 et 2 ; ce choix est justifié par les constatations précédentes sur la station de Colmar. Il permet de limiter le volume de nouvelles données à acquérir dans une

région située à l'aval du modèle et donc beaucoup moins sensible que la partie amont en ce qui concerne le calcul de la recharge.

Les nouvelles zones (qui ont été ajustées au cours du calage) sont représentées sur la figure 6.

Pour la présente étude, il a donc fallu acquérir auprès de Météo-France des séries de données complémentaires jusqu'en 2004, sur les 4 stations retenues pour le calcul de la recharge soit Meyenheim, Baldersheim, Mulhouse et Burnhaupt.

#### • Données de précipitations

Les séries doivent être continues sur toute la période de simulation. Les précipitations mensuelles ont pu être obtenues auprès de la climathèque de Météo-France jusqu'en décembre 2004 aux stations de Meyenheim, Mulhouse et Burnhaupt (ou bien relayées par une station voisine comme Burnhaupt relayée par Gildwiller à partir de 1997).

Par contre les données Météo-France de la station de Baldersheim présentent des discontinuités à partir de 1999 et la station n'est plus du tout suivie à partir de mars 2001. Les stations voisines les plus proches étant Mulhouse et Meyenheim, on a analysé à l'aide du logiciel SHALIMAR du BRGM les corrélations respectives entre les 3 séries et interpolé les valeurs manquantes à partir de la série la mieux corrélée à celle de Baldersheim soit Mulhouse.

#### • Données pour le calcul de l'ETP

L'évapotranspiration est une variable plus difficile à appréhender que la pluie, laquelle est mesurée directement et précisément. En fait, on ne peut en général estimer que l'évapotranspiration potentielle (ETP) à partir des données climatiques et non pas l'évapotranspiration réelle (ETR). De plus, plusieurs formules de calcul plus ou moins précises coexistent (Turc, Penman, etc..). L'imprécision sur cette variable doit en fait être compensée par le calage de l'ensemble des paramètres de recharge (cf chapitre 4).

Dans cette étude, on a choisi de calculer les évapotranspirations potentielles (ETP) à l'aide de la formule de Turc au pas de temps mensuel (logiciel ETPTURC du BRGM), à partir de la latitude de la station et de séries complètes de durée d'insolation et de température de l'air.

Les travaux antérieurs (Noyer et al., 1998) ayant montré que les valeurs d'ETP varient très peu sur la zone d'étude, on a considéré que l'on pouvait utiliser une série unique pour le domaine d'étude, calculée à partir des paramètres mesurés à la station de Meyenheim.



|  | 2010 4 |  |
|--|--------|--|
|  |        |  |
|  | Zone 5 |  |
|  |        |  |
|  | Zone 6 |  |
|  |        |  |

Figure 6 – Zones hydro-climatiques et stations météo

#### 2.4.4. Prélèvements

Pour l'étude antérieure de 1998, les prélèvements avaient été collectés de 1975 à 1997 sous la forme de cumuls annuels (1000 m<sup>3</sup> /an) en chaque ouvrage; ils comportent les AEP, AEI et les débits aux puits de fixation/dépollution du Bassin Potassique. Les données des ouvrages gérés par les MDPA ont été fournis par les MDPA, les données des ouvrages AEP par l'Agence de l'eau Rhin-Meuse, avec des compléments d'information demandés aux gestionnaires de champs captants comme EBE.

A l'occasion de la présente étude, les valeurs annuelles de prélèvements par ouvrage et par an ont été vérifiées et complétées sous la forme de 2 fichiers EXCEL contenant l'un les prélèvements des MDPA, de 1975 à 2002, suivis d'une mise à jour jusqu'en 2004 et l'autre tous les autres prélèvements jusqu'en 2001 sauf ceux destinés à l'irrigation, mal connus et donc négligés.

Le tableau 6 donne les valeurs des prélèvements des MDPA entre 1991 et 2004 ; la précision des données est remarquable pour une étude de ce genre.

On a compensé l'absence des données hors valeurs MDPA à partir de 2002 en répétant les valeurs de 2001.

Suite à la redéfinition de la géométrie du modèle, ces prélèvements ont ensuite été répartis dans chaque couche du modèle à partir de la position des zones crépinées de chaque ouvrage, extraite de la Banque des données du sous-sol.

Le préprocesseur WinMarthe permet d'importer au format d'entrée du logiciel MARTHE les valeurs ainsi obtenues et de les sommer par maille et par couche. On obtient ainsi les fichiers annuels de prélèvements lisibles par MARTHE. Ces valeurs varient beaucoup d'une année à l'autre en particulier dans la zone du Bassin Potassique du fait de la mise en place progressive de puits de fixation/dépollution.

Pour les calculs avec MARTHE, les valeurs de prélèvements sont transformées en m<sup>3</sup> par s, unité de travail choisie pour assurer plus facilement la cohérence avec les débits des rivières.

#### 2.5. DONNEES POUR LE TRANSPORT DE SALURE

Le BRGM grâce à son Service Régional Alsace assure le contrôle et le suivi de la contamination de la nappe par la salure et édite à ce titre des rapports annuels. Pour ces rapports, il établit les cartes de situation annuelles de la salure à partir des relevés aux différents points de mesure et dispose donc d'une partie des données nécessaires à la modélisation du transport, soit essentiellement les valeurs de concentration en chlorures en différents points de la nappe et du réseau hydrographique.

Les autres données nécessaires à la modélisation concernent les terrils (superficie, historique des traitements et des infiltrations, évolution programmée) et les puits de

fixation/dépollution (concentrations et débits, évolution) ; ces données sont fournies par les MDPA.

| Indice     | Nom_MDPA                     | _1991 | _1992 | _1993 | _1994 | _1995 | _1996 | _1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|
| 04131X0110 | Berrwiller                   | 69    | 65    | 57    | 52    | 52    | 54    | 48    | 62   | 58   | 39   | 26   | 9    | 0    | 0    |
| 04131X0127 | Berrwiller                   | 58    | 58    | 58    | 58    | 58    | 58    | 58    | 58   | 58   | 58   | 28   | 10   | 0    | 0    |
| 04131X0137 | Bollwiller                   | 130   | 35    | 116   | 0     | 0     | 36    | 273   | 300  | 335  | 252  | 285  | 295  | 17   | 259  |
| 04131X0138 | Bollwiller                   | 130   | 35    | 116   | 0     | 0     | 380   | 389   | 353  | 272  | 307  | 292  | 346  | 333  | 322  |
| 04131X0139 | Bollwiller                   | 130   | 35    | 116   | 0     | 0     | 500   | 438   | 500  | 535  | 422  | 284  | 282  | 222  | 317  |
| 04131X0140 | Bollwiller                   | 130   | 35    | 116   | 0     | 0     | 230   | 225   | 167  | 228  | 191  | 208  | 202  | 167  | 162  |
| 04131X0141 | Captage Dynamitière          | 427   | 546   | 508   | 575   | 481   | 466   | 450   | 114  | 136  | 141  | 148  | 160  | 146  | 155  |
| 04131X0142 | Captage Dynamitière          | 375   | 480   | 447   | 506   | 423   | 410   | 396   | 153  | 171  | 135  | 178  | 169  | 165  | 179  |
| 04131X0143 | Captage Dynamitière          | 282   | 361   | 336   | 380   | 318   | 308   | 297   | 122  | 133  | 126  | 129  | 123  | 120  | 134  |
| 04131X0144 | Captage Dynamitière          | 512   | 655   | 611   | 691   | 578   | 559   | 540   | 258  | 224  | 207  | 294  | 328  | 275  | 303  |
| 04131X0159 | Wittelsheim gare             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 92   | 204  | 143  | 74   | 0    | 45   |
| 04131X0172 | Wittelsheim gare             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 163  | 277  | 225  | 132  | 0    | 113  |
| 04131X0173 | Puits terril VA+Wittels.gare | 338   | 337   | 321   | 403   | 392   | 290   | 389   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0174 | Puits terril VA+Wittels.gare | 221   | 220   | 210   | 263   | 256   | 190   | 254   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0175 | Puits terril VA+Wittels.gare | 259   | 258   | 246   | 309   | 300   | 222   | 298   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0176 | Puits terril VA+Wittels.gare | 244   | 244   | 232   | 291   | 284   | 210   | 282   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0177 | Puits terril VA+Wittels.gare | 194   | 193   | 184   | 231   | 225   | 167   | 223   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0178 | Puits terril VA+Wittels.gare | 75    | 74    | 71    | 89    | 87    | 64    | 86    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0179 | Puits terril VA+Wittels.gare | 70    | 70    | 67    | 84    | 81    | 60    | 81    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0180 | Langenzug                    | 231   | 237   | 238   | 264   | 301   | 280   | 258   | 218  | 254  | 265  | 449  | 350  | 0    | 401  |
| 04131X0181 | Langenzug                    | 231   | 237   | 238   | 264   | 301   | 280   | 258   | 213  | 303  | 405  | 372  | 321  | 0    | 209  |
| 04131X0182 | Langenzug                    | 231   | 237   | 238   | 264   | 301   | 280   | 258   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04131X0183 | Langenzug                    | 231   | 237   | 238   | 264   | 301   | 280   | 258   | 253  | 249  | 318  | 256  | 227  | 0    | 181  |
| 04131X0184 | Langenzug                    | 231   | 237   | 238   | 264   | 301   | 280   | 258   | 858  | 525  | 581  | 422  | 480  | 0    | 454  |
| 04131X0185 | Langenzug                    | 231   | 237   | 238   | 264   | 301   | 280   | 258   | 336  | 313  | 342  | 282  | 280  | 0    | 307  |
| 04131X0186 | Langenzug AEP                | 228   | 298   | 302   | 307   | 328   | 316   | 305   | 433  | 429  | 390  | 636  | 729  | 0    | 574  |
| 04131X0187 | Langenzug AEP                | 228   | 298   | 302   | 307   | 328   | 316   | 305   | 88   | 39   | 59   | 101  | 101  | 0    | 1    |
| 04131X0188 | Langenzug AEP                | 228   | 298   | 302   | 307   | 328   | 316   | 305   | 106  | 85   | 75   | 84   | 56   | 0    | 0    |
| 04131X0189 | Langenzug AEP                | 228   | 298   | 302   | 307   | 328   | 316   | 305   | 138  | 178  | 160  | 160  | 179  | 0    | 51   |
| 04131X0190 | Langenzug AEP                | 228   | 298   | 302   | 307   | 328   | 316   | 305   | 284  | 377  | 362  | 300  | 376  | 0    | 392  |
| 04131X0191 | Langenzug AEP                | 228   | 298   | 302   | 307   | 328   | 316   | 305   | 400  | 372  | 360  | 169  | 208  | 0    | 173  |
| 04131X0213 | Puits terril VA+Wittels.gare | 246   | 246   | 234   | 294   | 286   | 286   | 376   | 394  | 371  | 331  | 333  | 385  | 359  | 272  |
| 04131X0214 | Puits terril VA+Wittels.gare | 246   | 246   | 234   | 294   | 286   | 459   | 396   | 643  | 491  | 424  | 308  | 432  | 368  | 365  |
| 04131X0215 | Puits terril VA+Wittels.gare | 246   | 246   | 234   | 294   | 286   | 464   | 367   | 588  | 439  | 1249 | 1274 | 1235 | 1119 | 1086 |
| 04131X0216 | Puits terril VA+Wittels.gare | 246   | 246   | 234   | 294   | 286   | 432   | 511   | 667  | 864  | 951  | 1186 | 1211 | 1123 | 1032 |
| 04131X0228 |                              | 333   | 167   | 96    | 335   | 330   | 121   | 132   | 138  | 233  | 168  | 174  | 201  | 0    | 0    |
| 04131X0240 | GALLI                        | 150   | 290   | 330   | 330   | 370   | 380   | 360   | 176  | 206  | 204  | 205  | 180  | 0    | 0    |
| 04131X0241 | GALLI                        | 150   | 285   | 327   | 327   | 374   | 385   | 364   | 191  | 189  | 212  | 190  | 218  | 0    | 0    |
| 04131X0246 | Max                          | 279   | 300   | 348   | 276   | 304   | 158   | 143   | 100  | 168  | 190  | 189  | 224  | 246  | 237  |
| 04131X0247 | Max                          | 279   | 300   | 348   | 276   | 304   | 248   | 181   | 191  | 225  | 295  | 293  | 355  | 279  | 308  |
| 04131X0251 | Max                          | 29    | 31    | 36    | 28    | 31    | 56    | 63    | 73   | 53   | 90   | 102  | 106  | 122  | 90   |
| 04131X0252 | Max                          | 29    | 31    | 36    | 28    | 31    | 46    | 54    | 81   | 40   | 64   | 66   | 81   | 77   | 57   |
| 04131X0253 | Max                          | 29    | 31    | 36    | 28    | 31    | 71    | 54    | 117  | 52   | 73   | 75   | 82   | 99   | 86   |
| 04131X0254 | Max                          | 29    | 31    | 36    | 28    | 31    | 69    | 80    | 91   | 63   | 57   | 55   | 6    | 0    | 0    |
| 04131X0255 | Max                          | 29    | 31    | 36    | 28    | 31    | 68    | 115   | 83   | 56   | 81   | 114  | 114  | 0    | 0    |
| 04131X0256 | Max                          | 29    | 31    | 36    | 28    | 31    | 78    | 77    | 143  | 50   | 84   | 74   | 12   | 0    | 0    |
| 04131X0257 | Max                          | 29    | 31    | 36    | 28    | 31    | 70    | 100   | 250  | 95   | 99   | 71   | 15   | 0    | 0    |

Tableau 6 – Prélèvements des ouvrages des MDPA (1991-2004) En milliers de m3 par an (source MDPA)

| Indice     | Nom_MDPA               | _1991 | _1992 | _1993 | _1994 | _1995 | _1996 | _1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|------------|------------------------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|
| 04131X0378 | Langenzug AEP          | 351   | 447   | 446   | 519   | 448   | 466   | 491   | 460  | 502  | 481  | 510  | 393  | 0    | 424  |
| 04131X0389 | puits fixation         | 839.1 | 688.4 | 640.5 | 609   | 621.2 | 617   | 638   | 533  | 512  | 528  | 490  | 590  | 534  | 592  |
| 04131X0409 | puits fixation         | 0     | 0     | 0     | 0     | 0     | 144   | 284   | 267  | 356  | 313  | 336  | 349  | 314  | 352  |
| 04131X0416 | puits fixation         | 0     | 0     | 0     | 0     | 34.82 | 80    | 53    | 46   | 50   | 147  | 73   | 94   | 89   | 82   |
| 04131X0418 | Piézo 413-1-418 Amélie | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 31   | 57   | 54   |
| 04131X0419 | Piézo 413-1-419 Amélie | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 30   | 70   | 54   |
| 04131X0443 | puits fixation         | 446.7 | 491.9 | 525   | 581.6 | 572.3 | 503   | 510   | 462  | 575  | 502  | 496  | 484  | 458  | 457  |
| 04131X0444 | puits fixation         | 514.7 | 603.7 | 652.3 | 579.6 | 550.3 | 592   | 468   | 451  | 472  | 505  | 507  | 503  | 491  | 530  |
| 04131X0462 | Alex n°1               | 0     | 0     | 0     | 0     | 0     | 0     | 109   | 106  | 111  | 98   | 171  | 130  | 63   | 2    |
| 04131X0466 | Alex n°2               | 0     | 0     | 0     | 0     | 0     | 0     | 86    | 120  | 112  | 86   | 114  | 132  | 143  | 4    |
| 04131X0509 | Amélie n° 6            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 27   | 80   | 83   | 87   | 79   | 82   |
| 04131X0510 | Amélie n° 7            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 47   | 112  | 97   | 117  | 129  | 133  |
| 04131X0511 | Amélie n° 8            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 42   | 103  | 120  | 136  | 128  | 126  |
| 04131X0512 | Marie-Louise n°1       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 55   | 118  | 125  | 129  | 121  | 127  |
| 04131X0513 | Marie-Louise n°2       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 68   | 136  | 133  | 148  | 153  | 160  |
| 04131X0514 | Marie-Louise n°3       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 45   | 117  | 126  | 135  | 117  | 127  |
| 04131X0559 | Amélie n° 10           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 62   | 204  |
| 04131X0560 | Amélie n° 11           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 78   | 229  |
| 04131X0561 | Amélie nº 9            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 763  |
| 04132X0074 | Ruelisheim             | 746.2 | 702.3 | 875.4 | 1628  | 842.3 | 832.3 | 0     | 742  | 802  | 763  | 595  | 702  | 1190 | 1334 |
| 04132X0075 | Ruelisheim             | 0     | 0     | 0     | 0     | 784.9 | 633.6 | 0     | 590  | 636  | 626  | 577  | 590  | 848  | 963  |
| 04132X0115 | Ensisheim A et B       | 1653  | 1183  | 838   | 1772  | 1299  | 982   | 2000  | 1800 | 1720 | 1705 | 2361 | 2549 | 1000 | 0    |
| 04132X0230 | Ensisheim 1            | 1746  | 1535  | 1114  | 2303  | 1554  | 1565  | 1381  | 1095 | 1858 | 1430 | 1833 | 2606 | 2412 | 3009 |
| 04132X0231 | Ensisheim 2            | 1083  | 1365  | 1734  | 2364  | 3169  | 1275  | 1310  | 1067 | 1821 | 625  | 1528 | 2550 | 2667 | 1960 |
| 04132X0232 | Ensisheim 3            | 1770  | 932   | 1251  | 1082  | 1156  | 1115  | 1250  | 1045 | 1634 | 1749 | 1495 | 1694 | 2467 | 2661 |
| 04132X0233 | Ensisheim 4            | 1721  | 1766  | 1663  | 1577  | 1700  | 1499  | 1455  | 1143 | 1900 | 1546 | 2097 | 2493 | 2750 | 2229 |
| 04132X0234 | Ensisheim 5            | 2061  | 3068  | 2321  | 5222  | 1709  | 1535  | 2000  | 1500 | 2411 | 2634 | 2723 | 2192 | 1000 | 0    |
| 04132X0235 | Ensisheim 6            | 1311  | 1848  | 1484  | 2465  | 2050  | 1542  | 2000  | 500  | 0    | 0    | 0    | 0    | 0    | 0    |
| 04132X0239 | Ensisheim A et B       | 1653  | 1183  | 838   | 1772  | 1299  | 982   | 1136  | 1143 | 1096 | 0    | 1434 | 2131 | 2000 | 0    |
| 04132X0245 | Ensisheim 7            | 614   | 1237  | 1293  | 1100  | 1493  | 1564  | 2000  | 2000 | 0    | 0    | 1310 | 0    | 0    | 0    |
| 04132X0291 | puits fixation         | 1138  | 1181  | 1067  | 1597  | 1792  | 1876  | 1657  | 1992 | 1973 | 0    | 2287 | 2359 | 2167 | 2372 |
| 04132X0302 | puits fixation         | 0     | 0     | 0     | 130.9 | 136.9 | 146.6 | 108   | 139  | 156  | 0    | 173  | 195  | 161  | 198  |
| 04132X0303 | puits fixation         | 0     | 0     | 0     | 383.4 | 345.4 | 318.2 | 311   | 340  | 352  | 0    | 362  | 416  | 356  | 467  |
| 04132X0330 | puits fixation         | 0     | 0     | 0     | 0     | 0     | 86.96 | 225   | 214  | 268  | 0    | 266  | 265  | 234  | 282  |
| 04132X0331 | puits fixation         | 0     | 0     | 0     | 0     | 0     | 251.6 | 641   | 719  | 687  | 0    | 927  | 1023 | 804  | 620  |
| 04132X0383 | Ensisheim Sud          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 113  | 1073 | 1061 | 1000 | 915  |
| 04132X0393 | Ensisheim Sud          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 75   | 860  | 811  | 853  |
| 04132X0394 | Puits Ungersheim 2     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 34   | 212  | 204  |
| 04132X0395 | Ensisheim Sud          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 134  | 350  | 216  | 275  |
| 04132X0397 | Ensisheim Sud          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 1117 | 1300 | 1385 |
| 04132X0398 | Ensisheim Sud          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 9    | 338  | 348  | 353  |
| 04132X0399 | Anna 1                 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 159  | 674  | 654  | 670  |
| 04132X0419 | Anna 2                 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 134  | 500  | 553  |
| 04132X0424 | Drain Théodore         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 418  | 400  | 526  | 468  | 286  | 0    |
| 04135X0212 | VJ1 ZP 085             | 339   | 249   | 259   | 336   | 383   | 298   | 0     | 283  | 334  | 0    | 636  | 380  | 315  | 314  |
| 04135X0213 | VJ2 ZP 083             | 707   | 693   | 564   | 711   | 632   | 403   | 0     | 333  | 421  | 0    | 401  | 423  | 413  | 416  |
| 04135X0240 | Gravière Michel        | 665   | 313   | 22    | 284   | 87    | 107   | 43    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 04135X0404 | Drain Joseph-Else Est  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 272  | 300  | 472  | 620  | 285  | 0    |

| Tableau 6 (suite) – Prélèvements des ouvrages des MDPA (1991-2004) |
|--------------------------------------------------------------------|
| En milliers de m3 par an (source MDPA)                             |

#### 2.5.1. Cartes de salure

Pour la simulation du transport, deux situations de salure ont été discrétisées, couche par couche, à partir des données observées. Il s'agit de la situation de 1991 choisie comme condition initiale pour le calage du transport et de la situation de 2004 destinée à la validation des résultats en fin de période de calage. Ces deux situations

permettent de disposer d'un plus grand nombre de points de mesure des chlorures grâce aux inventaires transfrontaliers de la nappe menés par la Région Alsace en 1991/1992 et 2003/2004.

Les 3 cartes de la situation de 1991 sont représentées aux figures 7 à 9 avec l'échelle de couleur choisie par le Comité de Pilotage à partir d'un compromis entre les représentations utilisées respectivement pour les inventaires transfrontaliers et les cartographies annuelles de la salure.

Les cartes de 2004 sont présentées au chapitre 4 avec les résultats du calage du transport. Il est important de noter ici que si les cartes de la première couche du modèle (alluvions récentes superficielles) sont relativement bien renseignées, celles des deux couches plus profondes sont nécessairement très interprétatives car on ne dispose que d'une faible densité de points de mesure.

#### 2.5.2. Données de salure dans les rivières

Les mesures proviennent des stations équipées pour l'enregistrement des débits et pour la mesure des teneurs en chlorure. Ces stations échantillonnent les principales rivières : Thur, Vieille Thur, III.

Les mesures acquises à différentes fréquences sont interprétées et restituées sous la forme de tableaux des moyennes mensuelles et annuelles de la concentration en chlorures. Les informations disponibles sont résumées au tableau 7. Elles ont été exploitées pour caractériser les variations annuelles de l'infiltration moyenne en chlorure de chaque tronçon de cours d'eau (repéré par le code « affluent » au tableau 7).

| Station  | 3786X0093 | 3782X0098       | 4132X0258        | 4136X0404 | 4132X0251 | 3787X0089 |          |        | 4132X0257 |
|----------|-----------|-----------------|------------------|-----------|-----------|-----------|----------|--------|-----------|
| Rivière  | LAUCH     | V. THUR<br>aval | V. THUR<br>amont | ILL amont | ILL sup.  | ILL Ober. | ILL AVAL | DOLLER | THUR      |
| Affluent | 41        | 16              | 16               | 31        | 32        | 33        | 34       | 11     | 15        |
| Années   |           |                 |                  |           |           |           |          |        |           |
| 1990     | 15.7      | 110             | 83               | 27.9      | 25.2      | 69        | 69       | 12.6   | 51        |
| 1991     | 18        | 92              | 83               | 30        | 20        | 59        | 59       | 10     | 60        |
| 1992     | 18        | 127             | 83               | 30        | 20        | 49        | 49       | 10     | 62        |
| 1993     | 18        | 168             | 74               | 30        | 20        | 41        | 41       | 10     | 39        |
| 1994     | 18        | 92              | 81               | 30        | 20        | 37        | 37       | 10     | 42        |
| 1995     | 19.5      | 88              | 72.9             | 30.5      | 19.8      | 38        | 38       | 10     | 41        |
| 1996     | 19.8      | 121             | 93.8             | 32.3      | 24        | 42.6      | 43       | 10.2   | 90.2      |
| 1997     | 20.25     | 97              | 93.3             | 33.75     | 23.5      | 42.2      |          | 9.1    | 77.6      |
| 1998     | 36.75     | 86.5            | 79.7             | 32.5      | 22        | 47.6      |          | 11     | 85.2      |
| 1999     | 13.8      | 58.8            |                  | 28.9      | 22.8      | 51.4      |          | 8.3    | 66.3      |
| 2000     | 14        | 57              |                  | 28        | 16        | 38        |          | 7      | 55        |
| 2001     | 11        | 55              |                  | 25        | 18        | 32        |          | 8      | 52        |
| 2002     | 14        | 73              |                  | 24        | 15        | 29        |          | 8      | 58        |

Tableau 7 – Evolution des chlorures dans les rivières (en mg/L)
# Infiltration NaCl en tonnes (source bilans annuels MDPA)

| Dénomination        | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  |
|---------------------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| ALEX Terril ancien  |        |        |        |        |        |        |        |       |       |       |       |       |       |
| ALEX Terril mixte   | 7200   | 7200   | 7200   | 7200   | 7200   | 7200   | 7200   | 7200  | 7200  | 4000  | 0     | 0     |       |
| ALEX bassin à boues |        |        |        |        |        |        |        |       |       |       |       |       |       |
| RODOLPHE            | 2300   | 2300   | 2300   | 2300   | 2300   | 2300   | 2300   | 2400  | 2300  | 2400  | 2400  | 1600  | 200   |
| ENSISHEIM Est       | 8500   | 8500   | 8500   | 8500   | 8500   | 5400   | 3600   | 600   | 600   | 600   | 0     | 0     |       |
| ENSISHEIM Nord      | 1400   | 1400   | 1400   | 1400   | 1400   | 1400   | 1400   | 1400  | 1400  | 800   | 600   | 0     | 0     |
| ENSISHEIM Ouest     | 3100   | 3100   | 3100   | 3100   | 3100   | 3100   | 3100   | 2500  | 2000  | 800   | 200   | 0     | 0     |
| MARIE-LOUISE        | 20600  | 20600  | 20600  | 20600  | 20600  | 24700  | 22000  | 17800 | 16600 | 16000 | 16000 | 16000 | 15000 |
| AMELIE Nord         | 13800  | 13800  | 13800  | 13800  | 13800  | 23200  | 21700  | 19800 | 14000 | 15000 | 14300 | 13500 | 10000 |
| Amélie Est          | 5300   | 5300   | 5300   | 5300   | 5300   | 5300   | 5300   | 5300  | 5300  | 5300  | 5300  | 5300  | 3200  |
| AMELIE II           | 2500   | 2500   | 2500   | 2500   | 2500   | 2500   | 2500   | 1500  | 200   | 200   | 100   | 0     | 0     |
| JOSEPH-ELSE Ouest   | 9500   | 9500   | 9500   | 9500   | 9500   | 9500   | 9500   | 9500  | 9500  | 9500  | 9500  | 9500  | 6500  |
| JOSEPH-ELSE Est     | 5000   | 5000   | 5000   | 5000   | 5000   | 3100   | 3100   | 3100  | 3100  | 3100  | 3100  | 3100  | 3100  |
| FERNAND             | 10500  | 10500  | 10500  | 10500  | 10500  | 5000   | 5000   | 5000  | 5000  | 5000  | 5000  | 2000  | 1500  |
| ANNA                | 7900   | 7900   | 7900   | 7900   | 7900   | 7900   | 7900   | 7900  | 7900  | 7900  | 7900  | 7900  | 7900  |
| EUGENE              | 5600   | 5600   | 5600   | 5600   | 5600   | 5600   | 5600   | 5600  | 5600  | 5600  | 5600  | 5600  | 5600  |
| THEODORE            | 6800   | 6800   | 6800   | 6800   | 6800   | 6800   | 6800   | 6800  | 6800  | 6800  | 3000  | 600   | 0     |
| TOTAL               | 110000 | 110000 | 110000 | 110000 | 110000 | 113000 | 107000 | 96400 | 87500 | 83000 | 73000 | 65100 | 53000 |

Tableau 8 – Infiltrations sous les terrils en Tonnes de NaCl (source MDPA)

(en jaune : modifications des infiltrations suite à des travaux de réaménagement)

| Dénomination             | 01/01/2004 | 01/01/2003 | 01/01/2002 | 01/01/2001 | 01/01/2000 | 01/01/1999 | 01/01/1998 | 01/01/1997 | 01/01/1996 | 01/01/1995 |
|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| ALEX bassin à boues      | 13.5       | 13.5       | 13.5       | 13.5       | 13.5       | 13.5       | 13.5       | 13.5       | 13.5       | 13.5       |
| ALEX Terril ancien       | 3.0        | 3.0        | 3.0        | 3.0        | 3.0        | 3.0        | 3.0        | 3.0        | 3.0        | 3.0        |
| ALEX Terril mixte        | 6.8        | 6.8        | 6.8        | 6.8        | 6.8        | 6.8        | 6.8        | 6.8        | 6.8        | 6.8        |
| AMELIE Est               | 2.7        | 2.7        | 2.7        | 2.7        | 2.7        | 2.7        | 2.7        | 2.7        | 2.7        | 2.7        |
| AMELIE II                | 2.6        | 2.6        | 2.6        | 2.6        | 2.6        | 2.6        | 2.6        | 2.6        | 2.6        | 2.6        |
| AMELIE Nord              | 34.5       | 34.5       | 34.5       | 34.5       | 34.5       | 34.5       | 34.5       | 34.5       | 34.5       | 34.5       |
| ANNA                     | 16.7       | 16.7       | 16.7       | 16.7       | 16.7       | 16.7       | 16.7       | 16.7       | 16.7       | 16.7       |
| ENSISHEIM bassin à boues | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        |
| ENSISHEIM Est            | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        | 7.1        | 7.1        | 7.1        | 7.1        |
| ENSISHEIM Nord           | 1.6        | 1.6        | 1.6        | 1.6        | 1.6        | 1.6        | 1.6        | 1.6        | 1.6        | 1.6        |
| ENSISHEIM Ouest          | 3.8        | 3.8        | 3.8        | 3.8        | 3.8        | 3.8        | 3.8        | 3.8        | 3.8        | 3.8        |
| EUGENE                   | 5.9        | 5.9        | 5.9        | 5.9        | 5.9        | 5.9        | 5.9        | 5.9        | 5.9        | 5.9        |
| FERNAND                  | 10.6       | 10.6       | 10.6       | 10.6       | 10.6       | 10.6       | 10.6       | 10.6       | 10.6       | 10.6       |
| JOSEPH-ELSE Est          | 6.2        | 6.2        | 6.2        | 6.2        | 6.2        | 6.2        | 6.2        | 6.2        | 6.2        | 6.2        |
| JOSEPH-ELSE Ouest        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        | 7.0        |
| MARIE-LOUISE             | 30.9       | 30.9       | 30.9       | 30.9       | 30.9       | 30.9       | 30.9       | 30.9       | 30.9       | 30.9       |
| RODOLPHE                 | 7.3        | 7.3        | 7.3        | 7.3        | 7.3        | 7.3        | 7.3        | 7.3        | 7.3        | 7.3        |
| THEODORE                 | 4.4        | 4.4        | 4.4        | 4.4        | 4.4        | 4.4        | 4.4        | 4.4        | 4.4        | 4.4        |
| TOTAL                    | 158.5      | 158.5      | 158.5      | 158.5      | 158.5      | 158.5      | 164.6      | 164.6      | 164.6      | 164.6      |

(1) ENSISHEIM - bassin à boues : l'abandon de ce terril a été prononcé le 14.09.1994. De ce fait la surface totale ne comprend plus ce terril.
 (2) ENSISHEIM Est : terril dissous partiellement en 1998

Tableau 9 – Surface occupée par les terrils en hectares (d'après document MDPA)

## 2.5.3. Infiltrations sur les terrils

Les données d'infiltration sur les terrils pour la période de calage soit 1991-2004 ont été fournies par les MDPA (tableau 8) ainsi que la superficie de ces terrils (tableau 9). Les données d'infiltration des terrils sont estimées par les MDPA sur la base de l'étude dite Graillat (Graillat et Brunck, 1980) et ajustées au fur et à mesure des observations faites au cours des travaux sur les terrils et suivant l'évolution de leur surface d'emprise au cours de leur réaménagement. Les tableaux sont présentés annuellement à la Commission interservices de contrôle des rejets des MDPA qui les valide.

Les terrils étanchés sont supposés donner lieu à une infiltration nulle au bout de deux années, temps estimé pour que le ressuyage du terril soit achevé. Il est important de noter ici que **les infiltrations des terrils en cours de dissolution accélérée sont par convention les mêmes que si le terril restait à la pluie**, en raison de la reprise des eaux infiltrées par le relevage du fossé de ceinture et par les puits de fixation et de la difficulté d'estimer la part réellement infiltrée. Cette convention, nous le verrons, sera la cause de quelques difficultés dans la modélisation.

A l'aide de ces deux tableaux et en se référant à la stoechiométrie, les infiltrations par terril en tonnes de Na CI par an sont transformées en kg de Cl<sup>-</sup> par mois et par m<sup>2</sup>; ces valeurs sont lues directement par MARTHE à chaque pas de temps de calcul du modèle.



Figure 7 - Carte de concentration en chlorures en 1991 (mg/L) – couche 1



Figure 8 - Carte de concentration en chlorures en 1991(mg/L) – couche 2



Figure 9 - Carte de concentration en chlorures en 1991 (mg/L) – couche 3

## 2.5.4. Evolution des teneurs en chlorures aux points de contrôle

Pour contrôler le calage du transport, on a rassemblé les historiques d'évolution de la salure disponibles au BRGM. Il s'agit :

- d'une part de 19 historiques sur des puits et des piézomètres comportant un ou plusieurs niveaux crépinés et répartis dans le Bassin potassique et les langues Est et Ouest. La localisation de ces piézomètres est présentée à la figure 10.
- d'autre part de 17 historiques sur des puits de fixation ou dépollution situés en aval des terrils.



Figure 10 – Localisation des points de suivi de la salure

## 3. Construction du modèle hydrogéologique

## **3.1. MODELE CONCEPTUEL**

#### 3.1.1. Etat des connaissances

Du point de vue géologique, les alluvions grossières de la plaine rhénane ont été déposées au Quaternaire par le Rhin, apportant du matériel clastique d'origine alpine, tandis que les affluents des Vosges et de la Forêt-Noire apportaient des matériaux érodés de ces massifs anciens.

Les alternances climatiques glaciaires et interglaciaires ont engendré des épisodes de transport de haute énergie entrecoupés de périodes plus calmes, où coexistaient terrasses exondées recouvertes de sédiments loessiques et zones de sédimentation clastique fine argilo-silto-sableuse. La structure des alluvions est donc très complexe ; les dépôts clastiques fins intercalés dans les alluvions grossières sont lenticulaires et entrecoupés de chenaux plus grossiers, et leur corrélation est donc assez aléatoire.

Le secteur d'étude est caractérisé par les cônes de déjection des rivières vosgiennes à l'Ouest, notamment l'immense cône de déjection des alluvions de la Thur qui s'ouvre en éventail jusqu'à Mulhouse où il est rejoint par les alluvions de la Doller (fig. 11). Le domaine des alluvions rhénanes à matériel alpin se situe à l'Est, on peut y distinguer la basse terrasse rhénane et l'ancien lit mineur du Rhin, inactif depuis la rectification de Tulla au 19<sup>ème</sup> siècle. Les domaines vosgien et rhénan sont séparés par la plaine d'épandage de l'III couverte de limons (fig. 11).

La distinction entre les domaines d'alluvions vosgiennes et alpines est fondamentale pour l'hydrogéologie car les alluvions rhénanes d'origine alpine sont bien roulées et bien classées avec peu de fines, tandis que les alluvions vosgiennes qui ont subi un transport plus court sont moins bien roulées et moins "propres" (c'est-à-dire plus argileuses et silteuses).

Il existe une zone de mélange entre les deux domaines, où alluvions vosgiennes et rhénanes peuvent être interstratifiées mais surtout où des éléments vosgiens sont repris dans les dépôts rhénans. Cette zone est cependant relativement étroite, de l'ordre de 2 à 3 km de largeur, témoignant d'une stabilité dans le temps du régime d'apports respectifs du Rhin et de ses affluents.

En ce qui concerne les subdivisions à l'intérieur des alluvions, un modèle conceptuel multicouche avait été établi dans le cadre de la modélisation hydrodynamique réalisée par le BRGM en 1997 (Noyer *et al.* 1998). Il était basé sur les travaux transfrontaliers menés en collaboration avec les équipes du Service géologique du Bade-Wurtemberg.



Figure 11 – Carte morphologique de la plaine rhénane



Figure 12 – Coupe-type des alluvions rhénanes (d'après LGRB)

#### 3.1.2. Alluvions rhénanes

Le modèle conceptuel de 1998 définissait 3 niveaux d'alluvions dans les alluvions rhénanes; il a été confirmé par les forages réalisés dans le cadre du projet INTERREG II de "Reconnaissance transfrontalière de l'aquifère profond dans la bande rhénane entre Fessenheim et Breisach" (Regierungspräsidium Freiburg, 2002). On distingue ainsi (cf. Fig. 12) dans les alluvions rhénanes :

- Couche 1 : Les alluvions récentes ou "formation de Neuenburg" qui sont peu altérées et très perméables ; elles comprennent des séquences distinctes d'alluvions plus grossières, et sont généralement plus grossières à la base. On a distingué lorsque c'était possible la partie supérieure T1 et la partie inférieure T2 ;
- Couche 2 : La séquence supérieure moyennement perméable des alluvions anciennes ou "formation de Breisgau" notée T3 ;
- Couche 3 : La séquence inférieure souvent peu perméable des alluvions anciennes ou "formation de Breisgau" notée T4.

Ce modèle conceptuel en 3 couches a été conservé dans la présente étude pour les alluvions rhénanes.

#### 3.1.3. Alluvions vosgiennes

Le modèle conceptuel des alluvions vosgiennes a par contre évolué. On distinguait en effet dans les alluvions vosgiennes du Bassin potassique une séquence supérieure d'alluvions vosgiennes non altérées perméables surmontant une séquence plus ancienne, plus argilo-sableuse et à galets corrodés, parfois très peu perméable, avec une intercalation argileuse de 1 à 2 m de puissance séparant localement les deux séquences.

Or les forages réalisés depuis dans le bassin potassique à l'aval des terrils Amélie et Rodolphe notamment ont mis en évidence la présence d'une séquence basale d'alluvions vosgiennes de sables grossiers à graviers voire à blocs, relativement perméables, parfois isolées sous un niveau argileux qui avait été confondu avec le substratum. On pourra prendre pour référence le forage du puits de fixation Marie-Louise 2 (04131X0513), dont on peut synthétiser la coupe de la façon suivante (*cf.* fig. 13) :

- 0 à 1 m : Recouvrement ;
- 1 à 7 m : Alluvions vosgiennes non altérées, présentant deux séquences plus grossières à la base avec une intercalation argileuse ;
- 7 à 24 m : Alluvions anciennes à galets altérés, passages argileux entre 16 et 22 m ;
- 24 à 26 m : Niveau argileux brun-roux ;

• 26 à 28,30 m : Alluvions de base : sables argileux à galets altérés et blocs.

| Indice : 04131X0513 Désignation : ML2 Commune : staffelfelden (68)<br>Lieu-dit : fixation cite marie-louise |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              |                                                  |                             |                         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|-------------------------|--|--|--|--|
| Localisation (Lan<br>X: 969.490 km<br>Y: 326.820 km<br>Z: 242.00 m                                          | bert 2) Ut<br>Pi<br>Pr<br>Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ilisation : depollutio<br>ézométrie indicative<br>ofondeur niveau d'e<br>ote piézométrique : | n<br>(01/02/1999)<br>au : 5.58 m/sol<br>236.42 m |                             |                         |  |  |  |  |
| 0 Prof. (m)<br>                                                                                             | terre vegetale brun fonce, re                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emblai                                                                                       |                                                  |                             | — 1.00                  |  |  |  |  |
|                                                                                                             | o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o      o    o    o |                                                                                              |                                                  |                             |                         |  |  |  |  |
|                                                                                                             | argile brune plastique sableuse a graveleuse, quelques galets                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                  |                             |                         |  |  |  |  |
|                                                                                                             | blocs et galets vosgiens, gravier et sable gris brun tres peu argileux                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                  |                             |                         |  |  |  |  |
|                                                                                                             | blocs pluridecimetriques, gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ets et gravier vosgie                                                                        | ens alteres, sable brun                          | heterometrique peu argileux | 7.00                    |  |  |  |  |
| 15 - °°°°                                                                                                   | blocs volcaniques et peu de gravier, galets et sable peu argileux                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                              |                                                  |                             |                         |  |  |  |  |
| 0 - 0 -<br>- 0 - 0<br>0 - 0 -                                                                               | matrice argileuse plastique b                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orune et galets, grav                                                                        | ier, sable grossier                              |                             | - 16.00                 |  |  |  |  |
| 20                                                                                                          | galets, gravier, sable grossie                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er et passages d'argi                                                                        | le sableuse brun-roux :                          | semi-plastique              | - 22.00 8               |  |  |  |  |
| - ***                                                                                                       | blocs volcaniques, gravier, g                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alets et sable peu a                                                                         | gileux brun roux                                 |                             | - 23.00 5               |  |  |  |  |
|                                                                                                             | gravier, galets et sable peu a                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | argileux brun roux                                                                           |                                                  |                             | - 24.00                 |  |  |  |  |
| 25 - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                    | argile brun roux sableuse a g                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | graveleuse semi plas                                                                         | stique, qq galets tres al                        | teres                       | ere<br>Rhénan<br>Brénan |  |  |  |  |
|                                                                                                             | gravier, galets alteres vosgie                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ens et sable grossier                                                                        | argileux brun roux                               |                             | — 26.00 ginber          |  |  |  |  |
|                                                                                                             | bloc et galets tres alteres et                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sable heterometriqu                                                                          | ie tres argileux                                 |                             |                         |  |  |  |  |
|                                                                                                             | argile silto-sableuse plastiqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e a semi-compacte l                                                                          | bariolee ocre et rouge,                          | peu de sable et gravier     | - 28.30 (00)            |  |  |  |  |
| 30 L                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              |                                                  |                             |                         |  |  |  |  |

Figure 13 – Coupe géologique du puits de fixation Marie-Louise 2

Le modèle conceptuel adopté pour les **alluvions vosgiennes** du Bassin potassique est ainsi le suivant :

- Couche 1 : Alluvions récentes perméables comprenant souvent deux séquences notées T1 et T2 ;
- Couche 2 : Alluvions anciennes à passages argileux, localement semiperméables, notées T3 ;
- Couche 3 : Alluvions de base formant des chenaux irréguliers, moyennement perméables, notées T4.

## 3.2. DEFINITION DES COUCHES AQUIFERES

#### 3.2.1. Définition des épaisseurs des couches

La zone d'étude s'étend sur plus de 40 km de Mulhouse au Sud à Colmar au Nord. Une extraction de la Banque du sous-sol a permis d'identifier 1300 forages répertoriés avec des coupes géologiques. Les travaux ont été menés en plusieurs étapes de préparation des données puis d'interprétation cartographique.

Dans une première étape, les coupes des forages ont été passées en revue, le code lithologique correspondant au faciès a été contrôlé et ajusté le cas échéant pour distinguer alluvions rhénanes et alluvions vosgiennes. Un code de T1 à T4 a de plus été noté lorsque l'une des subdivisions définies plus haut était apparente.

Dans une deuxième étape, des coupes sériées verticales de direction W-E dans la plaine et S-N dans le cône d'épandage de la Thur ont été tracées pour contrôle, à l'aide du logiciel GDM pour Windows. Dans le cône de la Thur et plus généralement sur la bordure ouest de la plaine, il est possible de distinguer les différentes séquences d'alluvions. Dans la zone de plaine rhénane par contre, les forages profonds sont des forages de recherche de potasse ou d'exploration pétrolière, qui détaillent rarement la coupe des alluvions, et permettent en général seulement de tracer la base de l'aquifère. Cette étape a permis de conforter et de préciser les interprétations faites à partir des coupes des forages individuels.

Dans une troisième étape, les données des forages individuels ont été exportées vers le logiciel MapInfo et reportées sous forme de points représentant :

- l'épaisseur de la couche 1 des alluvions récentes, en regroupant les séquences
  T1 et T2, qui ne pouvaient pas toujours être distinguées,
- l'épaisseur de la couche 3 des alluvions basales T4 (si présentes).

Les épaisseurs de ces deux couches ont fait l'objet d'une interpolation manuelle. Les résultats sont présentés respectivement avec les figures 14 et 16.

La couche 2 n'a pas été cartographiée car elle devait se déduire de l'épaisseur totale des alluvions diminuée des 2 autres couches.



Figure 14 – Caractéristiques de la couche 1 (alluvions récentes)

Dans la carte de la couche 1 ci-dessus, le domaine rhénan à matériaux alpins à fortes perméabilités (en bleu, supérieures à 5 10<sup>-3</sup> m/s) et épaisseur entre 30 et 60 m occupe la plaine actuelle. On distingue un chenal à matériel sableux moins perméable à l'Est le long du Rhin actuel, et une frange à mélange de matériaux alpins et vosgiens à l'Ouest. La présence des diapirs se manifeste par des réductions d'épaisseur le long de la ride de Meyenheim et surtout au niveau du dôme de Hettenschlag.

A l'Ouest, le domaine des matériaux vosgiens correspondant aux cônes de déjection est caractérisé par des chenaux plus perméables proches des cours actuels de la Thur et de la Doller. On note l'absence des alluvions récentes sous la colline de Pfastatt et dans la terrasse ancienne au Sud de la Thur.



Figure 15 – Caractéristiques de la couche 2 (alluvions anciennes supérieures)

Sur la carte de la couche 2 ci-dessus le domaine rhénan à l'Est est constitué de matériaux rhénans un peu altérés, les perméabilités sont encore supérieures à 1 10<sup>-3</sup> m/s en dehors de la frange de mélange avec les alluvions vosgiennes. Les limites de perméabilité à l'Ouest ont été harmonisées avec les travaux du Service géologique du Bade-Wurtemberg.

Le domaine vosgien à l'Ouest est caractérisé par des graviers argileux assez peu perméables (de l'ordre de 1 10<sup>-4</sup> m/s). Les nombreux sondages dans la zone des terrils du bassin potassique ont permis de distinguer des chenaux plus perméables et des zones argileuses très peu perméables d'après les descriptions lithologiques des ouvrages : les "taches" de faible perméabilité correspondent à des zones où les alluvions sont décrites comme très argileuses ou comprenant beaucoup d'intercalations de niveaux argileux.



Figure 16 – Caractéristiques de la couche 3 (alluvions anciennes inférieures)

La carte de la couche 3 ci-dessus distingue à l'Est un domaine rhénan d'alluvions alpines de 0 à 30 m d'épaisseur, dans lesquelles il n'a pas été possible de faire des zonages de perméabilité en raison du faible nombre de sondages (en vert, perméabilités de l'ordre de 1 10<sup>-3</sup> m/s). On notera la diminution d'épaisseur voire l'absence au droit des diapirs de Meyenheim et de Hettenschlag, et la réduction de largeur vers le Sud : en effet les alluvions anciennes sont érodées dans la trouée de Sierentz-Saint-Louis.

Dans le domaine vosgien à l'Ouest la couche 3 se résout à des chenaux d'alluvions basales un peu plus perméables que les alluvions anciennes sus-jacentes. Leur disposition qui suit les paléo vallées du substratum tertiaire est très importante pour les écoulements gravitaires de salure dense au voisinage des terrils.

## 3.2.2. Zonage des perméabilités

Une extraction des données d'essais de pompage collectées dans le cadre de la Banque Régionale de l'Aquifère Rhénan (programme cofinancé par la Région Alsace et le BRGM : BRGM-Région Alsace, 1996c) a été réalisée sous MapInfo. Les données d'essais de pompage donnent généralement des valeurs de débit spécifique, les perméabilités ne sont calculées que dans une minorité de cas.

Afin de disposer de plus de mesures pour l'interprétation des zones de perméabilité, il a été tiré avantage de l'assez bonne corrélation entre le débit spécifique et la transmissivité dans l'aquifère rhénan (fig. 17). Lorsque les résultats d'essais de pompage ne donnaient pas de transmissivité, celle-ci a été supposée égale au débit spécifique. Une perméabilité a ensuite été déduite en divisant la valeur de la transmissivité par la hauteur crépinée.



Figure 17 – Corrélation entre transmissivité et débit spécifique dans l'aquifère rhénan (données de la Banque Régionale de l'Aquifère Rhénan)

Les valeurs de perméabilité ainsi obtenues ont été reportées sur des cartes et ont permis d'attribuer des valeurs de perméabilité moyenne aux zonages établis d'après la lithologie (*cf.* figs. 14 à 16).

## **3.3. CONSTRUCTION DU MODELE GEOMETRIQUE**

## 3.3.1. Principe

Le modèle géométrique doit être construit comme le modèle hydrodynamique sur un maillage carré de 500 m resserré dans le bassin potassique à 125 m (maillage gigogne). Il aura donc 3 couches d'épaisseur variable comme le modèle conceptuel (fig. 18). La différentiation entre alluvions vosgiennes et rhénanes sera faite au niveau des perméabilités.



Figure 18 – Exemple de profil Ouest-Est à travers le modèle géométrique

Il faut ainsi créer un modèle maillé contenant pour chaque nœud les informations listées dans le tableau 10. La surface du sol est donnée par la topographie de l'IGN mais sera corrigée en fonction des données les plus récentes, afin de prendre en compte les affaissements miniers notamment.

La carte du substratum de l'aquifère est tenue à jour dans le cadre de la Banque Régionale de l'Aquifère Rhénan sous maîtrise d'ouvrage de la Région Alsace. Nous verrons qu'elle devra également être corrigée.

Les épaisseurs des couches 1 et 3 (alluvions récentes et basales) ont été définies sous forme de courbes de niveau (*cf.* paragraphe 3.2.1) tandis que les perméabilités des 3

| Information                                            | Unité       | Variable | Source                               |  |  |
|--------------------------------------------------------|-------------|----------|--------------------------------------|--|--|
| Coordonnées UTM32 du nœud                              | x en km     | X_UTM    | d'après le maillage du modèle        |  |  |
|                                                        | y en km     | Y_UTM    |                                      |  |  |
| Cote de la topographie                                 | z en m IGN  | Ztopo    | d'après les données IGN et MDPA      |  |  |
| Epaisseur de la couche 1                               | en m        | Eal1     | interprétation géologique            |  |  |
| Perméabilité de la couche 1                            | en 10-3 m/s | Pal1     | interprétation géologique            |  |  |
| Cote de la base de la couche 1                         | z en m IGN  | Zal1     | = Ztopo - Zal1                       |  |  |
| Epaisseur de la couche 2                               | en m        | Eal2     | = Zal1 - Zal2                        |  |  |
| Perméabilité de la couche 2                            | en 10-3 m/s | Pal2     | interprétation géologique            |  |  |
| Cote de la base de la couche 2                         | z en m IGN  | Zal2     | = Zsub + Eal3                        |  |  |
| Epaisseur de la couche 3                               | en m        | Eal3     | interprétation géologique            |  |  |
| Perméabilité de la couche 3                            | en 10-3 m/s | Pal3     | interprétation géologique            |  |  |
| Cote de la base de la couche 3<br>= cote du substratum | z en m IGN  | Zsub     | interprétation géologique de la BRAR |  |  |

couches sont disponibles sous forme de zonages (*cf.* paragraphe 3.2.2). L'épaisseur de la couche 2 sera obtenue par différence (tableau 10).

Tableau 10 – Données du modèle géométrique

## 3.3.2. Discrétisation de la topographie

La base de la topographie a été reprise de la topographie du modèle précédent basée sur le modèle numérique de terrain (MNT) de l'IGN (Noyer *et al.* 1998). Dans le Bassin potassique les MDPA tiennent une topographie à jour, prenant en compte les affaissements miniers. Ils ont donc mis à disposition du projet des courbes de niveau topographiques à jour à décembre 2003. Comme l'exploitation minière s'est arrêtée en septembre 2002 et que les affaissements résultant du foudroyage des tailles<sup>1</sup> se propagent rapidement vers la surface et sont complètement stabilisés dans un délai de 2 à 3 ans<sup>2</sup>, on peut considérer que la topographie des MDPA à décembre 2003 est, à 20 cm près, la **topographie définitive du bassin minier**.

<sup>&</sup>lt;sup>1</sup> Foudroyage des tailles : effondrement provoqué des vides laissés par l'exploitation, au fur et à mesure de l'avancement des travaux

<sup>&</sup>lt;sup>2</sup> Communication orale de M Rulleau (MDPA), voir aussi MDPA (1991)



Figure 19 – Topographie en courbes de niveau de la zone d'étude (équidistance : 1m) - A noter, le relief important représenté par la colline de Pfastaff et le léger relief engendré par le dôme diapirique de Hettenschlag

La topographie en courbes de niveau fournie par les MDPA, couvrant plus de 128 km<sup>2</sup>, a été insérée dans une topographie en courbes de niveau créée à partir du MNT de l'IGN (fig. 19). Les courbes de niveau ont ensuite été raccordées dans une zone tampon d'un kilomètre de large. Les reliefs constitués par les terrils des MDPA (en rouge sur la figure 19) ont été aplanis afin que la topographie résultante représente bien le toit de l'aquifère.

Enfin les courbes de niveau harmonisées ont été importées dans le logiciel GDM et ont fait l'objet d'une interpolation géostatistique (krigeage) dans la grille du modèle à 500 m et dans celle du modèle gigogne à la maille de 125 m. L'interpolation a été faite à partir des points de ces courbes avec un modèle linéaire avec dérive linéaire qui donne de bons résultats pour la restitution de topographies. La grille résultante a été exportée dans un fichier Excel.

Les courbes de niveau du substratum fournies par la Banque Régionale de l'Aquifère Rhénan ont été interpolées de la même façon et intégrées aux fichiers Excel des résultats.

#### 3.3.3. Création des couches aquifères

Les épaisseurs des couches 1 et 3 ont également fait l'objet d'un krigeage réalisé à partir des courbes de niveau tracées par le géologue. Le modèle employé était un simple modèle linéaire sans dérive afin d'éviter la création d'artefacts d'extrapolation.

Les données résultantes ont été importées dans les fichiers Excel des grilles respectives du modèle et du gigogne. Les cotes de la base des couches alluvionnaires ont ensuite été calculées à partir des cotes de la topographie et du substratum, suivant les formules du tableau 10.

Les valeurs de perméabilités des différentes couches ont été attribuées aux nœuds de la grille, sans interpolation, d'après les cartes des zonages de perméabilité disponibles sous MapInfo. Tous les nœuds situés dans une même zone de perméabilité sont ainsi affectés de la même perméabilité.

## 3.3.4. Le problème du substratum

Lors des essais de calage de la piézométrie dans le modèle hydrodynamique, il est apparu que la piézométrie n'était pas bien restituée dans certains secteurs affectés par les affaissements miniers : elle était généralement trop proche de la surface. Une réflexion critique a alors été menée sur la façon dont le modèle avait été créé.

Les affaissements miniers se propagent depuis les travaux miniers à plus de 400 m de profondeur : ils affectent donc le substratum aussi bien que la topographie, l'épaisseur des couches alluvionnaires étant globalement préservée (fig. 20a). Les affaissements miniers provoquent des affaissements d'amplitude variable, pouvant atteindre 5 à 6 m au maximum, qui sont fonction de l'épaisseur de la ou des couches exploitées (deux couches ont en effet été exploitées dans le bassin potassique) et de la largeur des stots<sup>3</sup> laissés en place.

En construisant le modèle géométrique, il avait été assumé implicitement que le substratum de la BRAR prenait en compte les affaissements. Or ce n'est pas nécessairement le cas.

<sup>&</sup>lt;sup>3</sup> Stot : Minerai laissé en place dans une exploitation afin de protéger certains ouvrages comme les puits d'extraction par exemple.



Figure 20 – Rôle du substratum dans la construction du modèle géométrique – a) avec un affaissement se propageant depuis la couche 1 – b) avec le substratum de la BRAR

En effet le substratum de la BRAR est tracé à partir des données de sondages ayant atteint la base de l'aquifère. La cote de la base de l'aquifère est obtenue en déduisant la profondeur du substratum de la cote de la surface du sol où est situé le forage. Une première difficulté provient du fait que la cote du sol des forages anciens utilisés pour la cartographie peut être antérieure aux affaissements. En fait, en l'absence de nivellement par un topographe, la cote du sol est déduite de la carte IGN à 1/25 000, qui est cohérente avec le MNT de l'IGN.

Une deuxième difficulté plus fondamentale est que l'amplitude des affaissements est généralement inférieure à 5 m, ce qui est peu par rapport à la précision de la carte du substratum dont les courbes de niveau sont tracées avec une équidistance de 10 m seulement, en raison de la densité relativement faible des sondages. De plus les courbes de niveau du substratum sont tracées dans l'idée de représenter une paléotopographie et sont lissées en conséquence, alors qu'un affaissement devrait apparaître comme une dépression à bords anguleux.

On peut donc dire que la carte du substratum de la BRAR ignore les affaissements miniers. Avec la méthode de construction géométrique adoptée, ceci induit un "étranglement" de l'aquifère (par réduction d'épaisseur de la couche 2) au niveau des zones d'affaissement minier, provoquant une remontée du niveau de la nappe de quelques mètres dans le modèle (fig. 20b).

Il était donc nécessaire de corriger le substratum en fonction des affaissements miniers, mais nous ne disposions pas de carte de l'amplitude des affaissements sur l'ensemble du bassin potassique depuis le début de l'exploitation. Nous avons alors raisonné que la différence entre la topographie de l'IGN et celle des MDPA de fin 2003 nous donnerait une information sur les affaissements survenus après les levés de la carte topographique de l'IGN. L'IGN consulté sur la date des levés de la carte topographique dans le bassin potassique n'a pas su répondre à cette question.

Nous avons fait l'exercice de calculer la différence entre la topographie des MDPA discrétisée dans le modèle géométrique et le MNT de l'IGN. Le résultat est reporté sur la carte des zones exploitées en figure 21. Les différences sont cohérentes avec les zones exploitées dans la partie centre et nord du gisement (sauf une zone au NW de Marie-Louise), et les différences les plus importantes apparaissent bien dans les secteurs où les deux couches ont été exploitées. Il n'y a pas de différences dans la partie extrême sud, pourtant exploitée récemment, où seule une couche peu épaisse a été exploitée.

Il semble donc bien que la topographie de l'IGN représente un état ancien encore peu affecté par les affaissements miniers. La différence avec la topographie récente des MDPA représente donc les affaissements, à quelques corrections près (NW de Marie-Louise). Nous avons donc corrigé le modèle géométrique de la façon suivante :

- Abaissement de la cote du substratum (Zsub) et de la cote de la base de la couche 2 (Zal2) de la valeur de l'affaissement,
- Augmentation de l'épaisseur de la couche 2 (Eal2) de la même valeur (car cette épaisseur est déduite des autres cotes).



Figure 21 – Carte des affaissements miniers déduits de la différence entre la topographie MDPA 2003 et la topographie de l'IGN

## **3.4. RESULTATS**

Les trois couches du modèle géométrique après discrétisation dans la maille de 500 m sont présentées en figure 22.

Le contraste entre le domaine rhénan à l'Est, affecté par les mouvements diapiriques surtout au niveau des alluvions anciennes, et le domaine vosgien à l'Ouest, beaucoup moins puissant, apparaît nettement. A chaque maille sont rattachées des estimations de perméabilité.

Le modèle gigogne à la maille de 125 m a été traité de la même manière ; ces données ont été intégrées dans le modèle hydrodynamique.



Figure 22 – Modèle géométrique (maille de 500 m) (1) couche 1 - Alluvions récentes (2) couche 2 – Alluvions anciennes (3) couche 3 – Alluvions de base

## 4. Construction et calage du modèle numérique

Le chapitre 3 a présenté les options ayant conduit à la nouvelle définition de la stratigraphie du modèle en trois couches alluvionnaires.

Les champs spatialisés sont interpolés aux centres des mailles du modèle de taille variable (125 m dans le Bassin Potassique et 500 m ailleurs).

## 4.1. GEOMETRIE DU MODELE

La géométrie du modèle est parfaitement déterminée par les champs suivants qui ont été redéfinis pour cette étude :

- la topographie, limite supérieure du modèle, qui constitue une cote de débordement potentiel ;
- le substratum de chacune des 3 couches (établi à partir de la topographie et des épaisseurs alluvionnaires successives) ;
- les limites verticales.

#### 4.1.1. Cotes topographiques et maillage

La figure 23 présente le maillage surperposé à la carte de la topographie. On distingue le maillage de 500 m en dehors de la zone du Bassin Potassique. Dans cette zone du BP, le maillage gigogne est à la taille uniforme de 125 m afin de pouvoir bien individualiser les influences des différentes sollicitations (prélèvements et infiltrations des terrils).

Pour des raisons de lisibilité, ce maillage fin n'apparaît pas sur la figure 23. On notera la représentation du réseau hydrographique en bleu et des terrils des MDPA en rouge.

#### 4.1.2. Epaisseurs des couches

Elles sont présentées au chapitre précédent, fig. 22.

On constate que dans chaque couche les épaisseurs varient énormément en augmentant globalement du sud-ouest vers le nord-est depuis une valeur parfois très faible (de l'ordre du mètre) jusqu'à environ 65 m pour la couche 1, 175 m pour la couche 2 et 37 m pour la couche 3. Aucune de ces couches n'est totalement continue sur l'ensemble du domaine d'étude.

C'est un des atouts du code MARTHE de savoir gérer de façon robuste et optimale la disparition locale des couches ainsi que les problèmes numériques susceptibles de se produire par dénoyage dans la partie sud-est de faible épaisseur.



Figure 23 – Maillage sur fond de la topographie

#### 4.1.3. Limites verticales

Les cartes des épaisseurs montrent que les extensions horizontales des couches ne sont pas identiques et que par conséquent les limites diffèrent d'une couche à l'autre.

Des limites verticales communes ont été définies en prenant l'enveloppe des limites de chaque couche. Les conditions hydrogéologiques imposées sur ces limites ont été ajustées au cours du calage en régime permanent, comme décrit au § 4.2.1.

## 4.2. METHODE DE CALAGE DU MODELE NUMERIQUE

Comme indiqué au chapitre 1, le calage du modèle numérique consiste à estimer aussi précisément que possible les paramètres physiques non directement accessibles à la mesure ou connus avec insuffisamment de précision (perméabilités et coefficients d'emmagasinement des couches aquifères, coefficients d'échange avec les rivières, recharge par zone, conditions aux limites etc...) en ajustant les résultats simulés aux observations (cartes et chroniques de piézométrie et de salinité, débits aux stations de jaugeage de contrôle, orientation des langues salées et trajectoires).

Le calage hydrodynamique se décompose en deux phases :

- le calage en régime permanent sur la piézométrie « moyenne » de juin 2002 intégrant une situation de ME sur les rivières différente de celle de 2002 (cf § 2.4.2.); il permet d'obtenir une première estimation d'une partie des paramètres;
- le calage en régime transitoire qui permet de prendre en compte l'inertie du système aquifère par le biais des coefficients d'emmagasinement, sur la période 1978-2004 pour laquelle on dispose de chroniques piézométriques, de débits aux stations de jaugeage, de données hydro-climatiques et des fluctuations annuelles des prélèvements.

Le calage du transport fait intervenir, en plus des paramètres liés à l'hydrodynamique transitoire, les paramètres liés aux sources de pollution (caractéristiques géométriques des terrils, historique des infiltrations sous les terrils et des teneurs en chlorures des rivières). Il permet d'affiner les variables telles que la porosité cinématique et la dispersivité et donc de mieux définir les trajectoires et les vitesses dont une première estimation a été obtenue lors du calage de l'hydrodynamique seule en régime transitoire. On procède à partir d'une situation de salinité initiale observée et on ajuste les résultats simulés aux observations (cartes et chroniques de salinité).

En résumé, on doit réaliser 3 étapes successives de complexité croissante au cours du calage du modèle : hydrodynamique permanente, hydrodynamique transitoire, transport. Il faut en général itérer sur les phases transitoires (hydrodynamique et transport).

## 4.2.1. Calage de l'hydrodynamique en régime permanent

Le calage en régime permanent est une étape préliminaire au véritable calage qui ne peut se faire qu'en régime transitoire.

Il permet cependant de vérifier la validité du zonage des perméabilités et des recharges et de tester, comme indiqué ci-dessus, différentes hypothèses sur les conditions aux limites, paramètres des rivières et trajectoires.

## a) Zones de recharge

Au chapitre 2, on a expliqué la procédure de définition géographique des zones de recharge à partir des données disponibles. La figure 6 présente une cartographie de ces zones.

Le code MARTHE offre la possibilité de réaliser un "bilan hydro-climatique intégré" dans ces zones prédéfinies à partir des données météorologiques.

Ce bilan est effectué en deux étapes :

- un bilan pluie-ETP permettant de calculer un excédent de pluie à partir du déficit maximal du sol (Réserve Utile des agronomes) ;
- la décomposition optionnelle de l'excédent de pluie entre une infiltration à la nappe (dans les mailles de la zone hydroclimatique) et un ruissellement qui est introduit dans le pas de temps dans la maille rivière la plus proche du réseau hydrographique.

Pour réaliser ces calculs, un certain nombre de paramètres, à caler, et de variables doivent être introduits en entrée du code ; lorsqu'on dispose des données nécessaires, on peut effectuer une estimation des paramètres à l'aide du modèle hydrologique global GARDENIA du BRGM (Thiéry, 2003) ce qui facilite le calage.

Les paramètres à caler dans chaque zone sont les suivants :

- RUMAX : le déficit maximal du sol (en mm) ;
- CFETP : le coefficient correcteur global d'ETP (en %) ;
- TPERC : la durée de demi-percolation du réservoir H représentant la zone non saturée au réservoir souterrain représentant la nappe (en mois dans le cas de cette étude);
- NRUIP : le niveau du réservoir H correspondant à 50 % d'infiltration et 50 % de ruissellement, ou d'équipercolation (en mm).

La signification physique de ces paramètres ainsi que la procédure de pré-calage à l'aide du code GARDENIA sont décrits en détail dans le rapport de 1998 (Noyer et al., 1998).

#### b) Calage du champ de perméabilité

Un premier zonage a été réalisé au moment de la construction du modèle conceptuel (chapitre 3) à partir de résultats de pompages d'essai et de mesures de débits spécifiques. Ce zonage est approximatif et les zones et valeurs dans les zones doivent ensuite être affinées au cours du calage du modèle.

On a effectué plusieurs itérations du processus suivant :

- calage automatique des perméabilités par zones ; la piézométrie réellement observée étant plutôt celle de la couche du haut (pas de piézomètre profond), on en

a tenu compte dans le calage automatique en prenant la même piézométrie observée pour les trois couches et en accordant un poids plus fort à celle de la couche 1 qu'à celle des deux autres ;

- examen des cartes piézométriques simulées, des champs de vitesse et des trajectoires à partir des terrils;
- ajustement du coefficient d'anisotropie verticale et redéfinition des zones de perméabilités ; on a procédé en jouant de préférence sur les zones du centre plaine dans les couche 2 et 3 où les perméabilités estimées sont le moins bien connues et en touchant le moins possible aux zones de la couche 1 supposées mieux connues.

Cette alternance de calages automatiques par zones et d'ajustement manuels est réalisée au cours des 3 phases de calage (hydrodynamique permanente, transitoire et transport).

Les résultats sont présentés au § 4.3.

#### c) Paramètres des rivières, canaux et drains

MARTHE permet de relier la hauteur d'eau au débit dans la rivière par une relation de type Manning-Strickler à condition de disposer de paramètres comme la pente et la rugosité du lit. Cette option a été retenue dans la présente étude. Une première estimation de l'ordre de grandeur des rugosités est réalisée à l'aide d'une procédure détaillée dans Noyer *et al.*, 1998.

Les paramètres à caler sont donc, comme indiqué au chapitre 2, pour chaque maille rivière : les perméabilités verticales, les épaisseurs de colmatage et la rugosité du lit. La procédure de calage est manuelle ; on doit itérer sur le calage de ces paramètres et sur celui des perméabilités de l'aquifère.

Pour les drains, il faut caler essentiellement les perméabilités d'échange avec la nappe. Comme indiqué au chapitre 2, on a défini deux types de drains : ceux qui peuvent être décrits de façon relativement précise (Wittelsheim, Richwiller, Joseph Else Est) et tous les autres.

Au final, le calage montre un impact significatif des drains sur l'aquifère mais nettement moins important que celui des rivières.

#### d) Conditions aux limites

La topographie constitue une cote de débordement pour l'aquifère alluvial qui est de type nappe libre.

Sur les limites verticales, on avait retenu dans le cas du modèle précédent (Noyer *et al*, 1998) :

- des valeurs de flux entrant dans la couche 1 sur les limites ouest et sud-ouest correspondant à des apports d'eau des versants des Vosges et du Sundgau et

provenant d'une étude antérieure (BURGEAP-IMF, 1996) ; une condition de flux nul dans les 2 autres couches, ce qui revient à supposer qu'il n'y a pas d'alimentation en profondeur depuis les Vosges et le Sundgau ;

- des conditions de potentiel imposé sur les limites nord et sud dans toutes les couches ;
- un flux nul sous le Rhin dans toutes les couches, le Rhin étant lui-même en interaction dynamique avec l'aquifère alluvial dans la couche 1.

Dans le cadre de cette étude, on a, au cours du calage, été amené à revoir les conditions aux limites ouest et sud-ouest, les valeurs de flux calculés antérieurement ne paraissant plus totalement adaptées.

Au final, les conditions de flux dans la couche 1 ont été remplacées par des conditions de potentiel imposé, les autres conditions étant conservées.

## e) Trajectoires

Les trajectoires simulées sont ajustées en même temps que la piézométrie en jouant sur les perméabilités des couches de façon à suivre l'enveloppe des langues salées (avec en particulier le changement brusque d'azimut de la langue est). Il s'agit dans cette phase de caler les directions mais pas encore les vitesses, ce qui ne peut être réalisé qu'en régime transitoire.

## 4.2.2. Calage de l'hydrodynamique en régime transitoire

Il s'agit d'évaluer le champ des coefficients d'emmagasinement libre (correspondant à la porosité) et d'améliorer les valeurs obtenues pour les paramètres estimés au cours du calage en régime permanent, en particulier les perméabilités dans l'aquifère et les coefficients d'échange avec les rivières.

Pour ce faire, on utilise les longues séries de données décrites au chapitre 2 :

- des variations de débits "sources " des cours d'eau, soit :
  - des variations mensuelles de débit à l'amont des quatre rivières ouest (III, Doller, Thur et Lauch) et de la défluence que constitue la Vieille-Thur par rapport à la Thur (station de Ungersheim) ; elles sont assimilées aux variations des "sources" des rivières dans le modèle (§ 2.4.2);
  - pour le Rhin, on a obtenu les variations mensuelles de débit à la station de Kembs qui jauge la partie du débit détournée dans le grand canal d'Alsace ;
  - pour les canaux, on a gardé constante la valeur calée sur la situation de ME, en régime permanent sauf pour le canal de la Hardt dont on a pris en compte les fluctuations à partir du moment où elles ont été connues;
- des variations mensuelles de la pluie et de l'ETP pour chacune des six zones hydrologiques ;
- des variations annuelles des prélèvements divers soit AEP, AEI, puits de fixation/dépollution du Bassin Potassique (§ 2.4.4.).

Comme données de contrôle, on dispose des évolutions de débit des rivières Thur et III aux cinq stations de jaugeage situées dans le modèle (fig.2) ainsi que d'historiques de charge sur une vingtaine de piézomètres (fig. 1).

Le calage est réalisé au pas de temps mensuel entre janvier 1978 et décembre 2004 soit sur 27 ans, à partir de la situation de ME obtenue lors du calage en régime permanent.

Les résultats sont présentés au § 4.3.

#### 4.2.3. Calage du transport de masse en régime transitoire

Au cours de cette phase, on s'efforce d'obtenir la meilleure estimation possible des vitesses de transport et des paramètres de dispersion ce qui passe donc par une amélioration du calage des porosités mais aussi éventuellement un affinage des autres paramètres, en particulier des perméabilités qui permettent de calculer les vitesses de Darcy dont dépendent les vitesses réelles.

Pour ce faire, on cherche à reproduire deux types de données observées :

- les cartes de concentration en chlorures établies pour 2004, en fin de période de calage ;
- les évolutions sur 19 piézomètres comportant un ou plusieurs niveaux crépinés et répartis dans le Bassin Potassique et les langues Est et Ouest et sur 17 puits de fixation ou dépollution situés en aval des terrils (cf § 2.5.4.).

Remarque sur ces données « observées » :

- les cartes des chlorures sont, comme les cartes piézométriques, obtenues par interpolation entre des valeurs observées ponctuelles et, à ce titre, sont évaluées avec une marge d'incertitude, surtout dans les couches inférieures moins bien renseignées;
- les mesures ponctuelles sur les chroniques de concentration présentent aussi une marge d'incertitude difficile à évaluer et certainement plus importante que celle qu'on peut rencontrer sur les chroniques piézométriques ; en effet, de par la méthode de mesure, elles sont souvent relativement discontinues contrairement aux mesures de niveau d'eau ; de plus, sur les ouvrages multicrépinés, il faut les attribuer à une des 3 couches du modèle et, selon l'épaisseur de la couche et la position des crépines, elles sont plus ou moins représentatives de la concentration moyenne dans la couche en question.

Remarque sur le calcul du transport : lors du montage du projet, il avait été envisagé de prendre en compte dans ce calcul les effets densitaires. A ce moment là, on pensait pouvoir simplement affiner le modèle existant (celui de 1998).

Or l'acquisition de nouvelles données tant géologiques que géophysiques a nécessité de refaire un modèle conceptuel nouveau et de recaler complètement ce modèle, ce qui a impliqué de passer beaucoup plus de temps que prévu sur les étapes amont au

calcul du transport *stricto sensu*. A cette occasion, le choix a été fait d'affiner la discrétisation horizontale dans tout le Bassin Potassique où la superficie des mailles à été divisée par 16 par rapport au modèle prototype, ce qui permet une bien meilleure individualisation des différents termes sources (infiltration sous les terrils, pompages dans les puits de fixation/dépollution ...).

De ce fait, le nouveau modèle, une fois calé, est par construction beaucoup plus précis que le précédent alors même que, comme pour le modèle prototype, on a conservé la discrétisation verticale en 3 couches avec des épaisseurs très variables dans l'emprise du modèle et très faibles dans le Bassin Potassique.

Les premiers tests ont montré que l'effet densitaire n'intervenait qu'au voisinage immédiat des terrils, et que le transport isodensitaire sous l'effet du gradient de pression seul était prépondérant à l'aval. D'autre part une simulation détaillée de l'effet densitaire au voisinage des terrils nécessiterait de faire des "zooms" sur les terrils à partir du modèle général, en multipliant le découpage vertical des couches.

Aussi, afin de ne pas compliquer inutilement les calculs déjà lourds, la décision a été prise de simuler l'effet densitaire sous les terrils en répartissant l'infiltration dans les 3 couches du modèle. Cette répartition est calée sur les teneurs observées dans les puits de fixation à l'aval des terrils et sur les cartes observées en 2004 dans chaque couche.

Cette décision de modélisateur a été actée en réunion du Comité de Pilotage du 27 avril 2005.

Les résultats sont présentés au § 4.3.

## 4.3. RESULTATS DU CALAGE DU MODELE NUMERIQUE

#### 4.3.1. Perméabilités calées

Le champ de perméabilités après calage final est présenté aux figures 24 à 26 avec une échelle en 10<sup>-3</sup> m/s.

On observe que les zones et valeurs de ce champ sont globalement en accord avec l'ordre de grandeur des premières estimations résultant de la géophysique et des mesures locales (pompages d'essai et débits spécifiques) présentées aux figures 14 à 16 du chapitre 3.


Figure 24 – Perméabilités de la couche 1 (en 10<sup>-3</sup> m/s)



Figure 25 - Perméabilités de la couche 2 (en 10<sup>3</sup> m/s)



Figure 26 - Perméabilités de la couche 3 (en  $10^{-3}$  m/s)

# 4.3.2. Piézométrie simulée en juin 2002

La figure 27 présente la carte de la piézométrie simulée avec les isovaleurs observées et simulées. Cette carte résulte du calage en régime permanent sur la situation de ME de juin 2002.

La superposition des isovaleurs montre que le calage est globalement tout à fait satisfaisant quoique un peu moins bon dans la zone des affaissements du Bassin Potassique.



Figure 27 – Charges simulées en régime permanent (en m) avec isovaleurs simulées (en bleu) et observées (en rouge)

La carte piézométrique « observée » résulte d'une interpolation manuelle par l'hydrogéologue entre les valeurs mesurées ponctuellement ; la précision de cette carte dépend fortement de la densité des points de mesure et de leur répartition.

Ceci explique qu'il y ait inévitablement quelques écarts entre les isovaleurs observées et simulées comme il apparaît à la figure 27.

Afin de mieux expliciter ces résultats, on a représenté à la figure 28 la relation entre les valeurs simulées et observées aux points de mesure. On constate que la corrélation est excellente avec un coefficient d'ajustement très proche de 1. La moyenne des valeurs absolues des écarts est égale à 1.04 m.



Figure 28 – Calage en régime permanent sur la situation de Juin 2002 - Corrélation entre charges observées et simulées

# 4.3.3. Emmagasinement et porosités calés

Le calage en régime transitoire permet d'obtenir le champ des coefficients d'emmagasinement libre et captif.

Si la perméabilité caractérise la capacité du milieu poreux saturé à favoriser l'écoulement, le coefficient d'emmagasinement caractérise sa capacité à stocker et à restituer l'eau.

Dans le modèle, il faut prendre en compte deux sortes de coefficients d'emmagasinement : le coefficient en nappe libre et le coefficient en nappe captive du fait de l'existence d'une géométrie multicouche :

- en nappe libre, le coefficient d'emmagasinement est proche de la porosité efficace de la formation exprimée en % ;
- en nappe captive, il caractérise la quantité d'eau que l'on peut extraire en décomprimant la formation saturée; dans le modèle, on considère en fait le coefficient d'emmagasinement spécifique, exprimé en m<sup>-1</sup> qui correspond à la proportion d'eau récupérée, rapportée à une hauteur unité de formation saturée.

Le calage conduit à une valeur de  $10^{-4}$  m<sup>-1</sup> du coefficient d'emmagasinement spécifique S<sub>s</sub> uniforme dans le domaine.

En ce qui concerne l'emmagasinement libre  $S_L$ , on présente aux figures 29 à 31 le zonage résultant du calage. Les porosités cinématiques qui permettent de calculer les vitesses de transport de masse sont assimilées aux porosités efficaces et donc aux emmagasinements libres.

# 4.3.4. Historiques de charge

Le calage de l'hydrodynamique en régime transitoire permet de simuler les historiques de charge observés dont l'implantation est présentée à la figure 1.

On peut distinguer deux groupes d'historiques selon qu'ils sont situés dans la partie est du modèle, entre le Rhin et l'III ou bien dans la partie ouest du modèle soit dans le Bassin Potassique et en aval de celui-ci.

On présente en annexe 2 les résultats du calage sous la forme de graphes superposant les valeurs mesurées et simulées. On observe :

- une période de mise en régime du modèle sur quelques cycles hydrologiques, rendue nécessaire du fait de l'écart entre la situation simulée au départ (juin 2002) et la situation observée (janvier 1978) globalement plus basse, surtout dans le centre plaine ;
- ensuite à partir des années 90, une représentation de l'évolution des piézomètres plus ou moins bonne selon les points mais globalement tout à fait satisfaisante étant donné l'état des connaissances.



| 8  |  |  |
|----|--|--|
| 12 |  |  |
| 15 |  |  |
| 20 |  |  |

Figure 29 – Zonation des emmagasinements libres en couche 1 et valeurs en %



Figure 30 - Zonation des emmagasinements libres en couche 2 et valeurs en %



Figure 31 - Zonation des emmagasinements libres en couche 3 et valeurs en %

# 4.3.5. Historiques de débit aux stations de jaugeage

On présente en annexe 3 les évolutions des débits observés et simulés aux 5 stations de jaugeage de contrôle du modèle.

Comme pour les piézomètres, la restitution est globalement satisfaisante, les étiages étant très bien restitués, les pointes un peu moins bien selon les cas.

# 4.3.6. Historiques de salure

On présente à l'annexe 4 les évolutions des chroniques de salure observées et simulées.

Pour plus de lisibilité, on n'a représenté que les évolutions aux couches captées, sauf lorsqu'il y avait une incertitude sur la position des crépines par rapport à la couche testée (*cf.* § 4.2.3).

On distingue a) Piézomètres de la langue Ouest du Nord au Sud, b) Piézomètres de la langue Est du Nord au Sud, c) Puits de fixation/dépollution.

Sur ces figures, il faut davantage considérer la pente et son sens de variation que la valeur absolue du point de départ des chroniques simulées, laquelle peut différer de la valeur observée du fait de la construction de la carte initiale par interpolation : les valeurs aux points observés ne se retrouvent pas nécessairement exactement au départ des courbes simulées.

Les intervalles de variation sont très différents d'un dessin à l'autre. On peut faire les remarques suivantes :

# a) Piézomètres de la langue Ouest

- Au Nord du modèle, les simulations sur les puits de Colmar (03427X0001 et 03782X0059) ne permettent pas de restituer la croissance de la teneur observée en ces points ; on soupçonne l'existence d'une source complémentaire de chlorures à l'Ouest du modèle, qui pourrait provoquer les augmentations de teneur observées, hypothèse qui sera testée à l'aide du scénario 2.
- Les autres chroniques de la langue Ouest sont globalement bien restituées, tout particulièrement celle au puits EBE 03786X0029.

# b) Piézomètres de la langue Est

- Les piézomètres les moins bien simulés sont les deux ouvrages 04131X0292 et 0293 en aval immédiat d'Amélie ; ceci pourrait être dû à des effets densitaires non pris en compte à proximité du terril.
- Par contre le 04131X0294 Nonnenbruch, situé un peu plus en aval dans l'axe de la langue salée d'Amélie, est bien reproduit.

# c) Puits de fixation

- Pour les puits Dynamitière en aval de Marie-Louise, les teneurs simulées sont inférieures aux teneurs observées : on peut là encore suspecter les effets densitaires non pris en compte.
- Par contre, les puits de fixation en aval d'Amélie sont bien simulés. Il faut noter que les pics observés pendant les opérations de dissolution ne peuvent pas être reproduits par le modèle (la dissolution accélérée n'est pas spécifiquement prise en compte faute de données pertinentes disponibles).
- Les teneurs simulées aux puits de fixation Aire de stockage, Rodolphe, Alex et Ungersheim sont un peu faibles. Il faut cependant tenir compte des phases de dissolution accélérée pour Alex et Rodolphe, entre 91 et 95, qui ne peuvent être simulées : elles ont un impact sur l'évolution de la concentration même après arrêt de la dissolution d'où un écart entre observé et simulé qui ne peut être résorbé.
- Les puits Ensisheim, Fernand et Eugène sont bien simulés.
- Le puits de fixation Théodore montre des pics observés pendant les opérations de dissolution qui ne peuvent pas être reproduits.
- Au puits Joseph Else Est, les teneurs simulées sont sous estimées ; par contre le puits Joseph Else Ouest est bien simulé.

# 4.3.7. Cartes de concentration observées et simulées en 2004

Aux figures 32 à 34, les cartes de concentration observées et simulées en 2004 sont présentées, pour chaque couche du modèle, avec l'échelle de couleur définie par le Comité de Pilotage.

Ces cartes appellent les observations suivantes :

| Couche 1                              |                                                                                                                                        |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Langue Ouest                          | Teneurs bien simulées ; la branche ouest de<br>la langue n'est pas simulée en l'absence<br>d'une autre source de salure                |
| Terrils Marie-Louise et Alex-Rodolphe | Les teneurs apparaissent trop fortes en aval (puits de fixation sous-estimés)                                                          |
| Langue Est                            | Teneurs bien simulées mais étalement excessif de la langue vers l'Est                                                                  |
| Terrils Ensisheim                     | La simulation montre un effet de dilution par<br>les infiltrations de l'III qui est probablement<br>plus exact que la carte "observée" |
| Terrils Théodore et Eugène            | Impact de Théodore plus faible car la<br>dissolution accélérée n'est pas simulée                                                       |
| Terrils Amélie, Anna et Fernand       | Simulation très bonne                                                                                                                  |
| Terrils et langue Joseph Else         | Impact des terrils beaucoup trop fort : mauvaise simulation de la fixation                                                             |



Figure 32 – Cartes de concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) couche 1

# Couche 2

Langue Ouest

Terrils Marie-Louise et Alex-Rodolphe

Langue Est Terrils Ensisheim Terrils Théodore et Eugène

Terrils Amélie, Anna et Fernand Terrils et langue Joseph Else Teneurs un peu sous-estimées ; la branche ouest de la langue n'est pas simulée en l'absence d'une autre source de salure Les teneurs apparaissent trop fortes en aval (puits de fixation sous-estimés) Teneurs bien simulées Bonne simulation Simulation acceptable, les teneurs observées à l'amont ne peuvent être expliquées (source naturelle ?) Simulation très bonne Impact des terrils trop fort. On remargue sur la

carte simulée une langue salée s'écoulant vers le NE entre Amélie et Anna. Ce phénomène n'est pas observé du fait du manque de piézomètres dans ce secteur et mériterait d'être contrôlé par géophysique.

# Couche 3

Langue Ouest Terrils Marie-Louise et Alex-Rodolphe

Langue Est Terrils Ensisheim

Terrils Théodore et Eugène Terrils Amélie, Anna et Fernand

Terrils et langue Joseph Else

Les teneurs apparaissent trop fortes en aval (puits de fixation sous-estimés) Teneurs bien simulées Les teneurs en aval des terrils apparaissent plus élevées dans la simulation, mais nous n'avons pas de piézomètres pour trancher. Simulation acceptable Simulation bonne sauf au niveau d'Amélie où les teneurs sont sous-estimées (non prise en compte des effets densitaires ?) Simulation acceptable.

Teneurs bien simulées

On observe un bon accord global du simulé à l'observé, en dehors de certains terrils où soit la fixation n'est pas bien reproduite et les teneurs en aval apparaissent surestimées, soit les concentrations élevées observées sous les terrils sont sousestimées. Ces défauts peuvent être imputés soit à la non prise en compte de la dissolution accélérée dans le modèle soit à la non prise en compte des effets densitaires sous les terrils.



Figure 33 – Cartes de concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) couche 2



Figure 34 – Cartes de concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) couche 3

# 4.3.8. Calcul du tonnage de chlorures dans la nappe

A la demande du Comité de pilotage, le tonnage de chlorures présents dans la nappe calculé par le modèle a été comparé au tonnage de chlorures estimé par le BRGM et les MDPA en 2004 suivant différentes méthodes de calcul.

En effet le BRGM (Service géologique régional Alsace) a effectué un calcul de cubage des chlorures dans la nappe en 2004 à partir de cartes d'isovaleurs pour chaque couche du modèle. Le cubage est effectué par la méthode des sections pour chaque couche, à la teneur de coupure de 250 mg/L, en prenant en compte les mêmes épaisseurs que dans le modèle, mais avec des porosités uniformes pour chaque couche : 15 % pour les alluvions récentes, 10 % pour les alluvions anciennes argileuses et 15 % pour les alluvions de base graveleuses.

Ce cubage donne une estimation de 455 000 tonnes de chlorures dans la nappe en 2004. La difficulté de ce type de calcul tient dans le choix de la valeur de concentration prise pour chaque isocontour (la concentration moyenne de la surface entre les contours à 1 g/L et à 5 g/L par exemple est impossible à déterminer de façon exacte par des méthodes manuelles). Le tonnage des langues salées aval, dont la surface immense est multipliée par une valeur moyenne arbitraire, est de ce fait très incertain.

Les MDPA ont de leur côté évalué le tonnage de chlorures dans la nappe à partir d'un bilan historique des infiltrations des terrils et des tonnages extraits de la nappe par les pompages, et aboutissent à une estimation de 436 000 tonnes de chlorures dans la nappe en 2004. Ce cubage, bien que cohérent avec le précédent, ne prend cependant pas en compte de teneur de coupure et néglige donc les chlorures disparus par dilution en aval. Si les tonnages extraits de la nappe sont des grandeurs mesurées, il faut bien noter que les tonnages infiltrés dans la nappe sont des estimations très approximatives (basées sur le rapport Graillat de 1980), dont la précision est impossible à évaluer.

Il était donc intéressant de comparer ces estimations convergentes malgré leur mode de calcul très différent avec le tonnage de chlorures présents dans la nappe en 2004 d'après la simulation. Ce tonnage est de 332 000 tonnes à la teneur de coupure de 250 mg/L, en prenant en compte la géométrie du modèle (épaisseurs mouillées des alluvions) et les porosités issues du calage des évolutions piézométriques et du transport. On constate que les tonnages obtenus par les estimations des MDPA et par la cartographie du BRGM sont supérieurs de plus de 25 % aux calculs du modèle de simulation (tableau 11).

Une différence de 25 % entre des cubages aussi complexes n'est pas *a priori* déraisonnable : en exploitation minière on qualifie des réserves affectées d'une incertitude de  $\pm$  25 % de certaines à probable, suivant le type de minerai considéré.

Une comparaison détaillée fait apparaître que la moitié de la différence entre les deux calculs (60 000 tonnes de moins dans le modèle) est localisée dans les couches 1 et 3 de la langue salée du terril Amélie aux terrils Fernand-Anna (tableau 11). En effet, comme nous l'avons vu plus haut, les concentrations calculées par le modèle sont beaucoup plus faibles que les concentrations observées sous et à l'aval immédiat du

terril Amélie, ce qu'on peut attribuer à la fois à la non prise en compte des travaux de dissolution accélérée qui réalimentent en continu le stock de saumures concentrées sous le terril (on observe en effet des concentrations jusqu'à 40 g/L en profondeur sous certains terrils) et à la non prise en compte par le modèle de l'effet densitaire qui fixe ces saumures sur place.

La même observation peut être faite à propos des secteurs Marie-Louise (près de 30 000 tonnes de moins dans le modèle) et Théodore-Eugène (13 000 tonnes de moins), et ce pour les mêmes raisons de non-prise en compte des travaux de dissolution en cours.

En ce qui concerne le secteur Joseph Else par contre, le modèle donne plus de 20 000 tonnes de plus que le calcul manuel, notamment au niveau de la couche 2. Ceci peut s'expliquer par des problèmes de géométrie (les terrils sont en effet très petits par rapport aux mailles du modèle), et par un manque de données dans cette couche pouvant avoir entraîné une sous-estimation du tonnage par le calcul manuel.

Pour se rendre compte de l'effet des fortes concentrations sur le cubage de la salure, il faut considérer que les environs immédiats du terril Amélie représentent près de 20 000 tonnes de chlorures si l'on suppose que ces chlorures ont une teneur moyenne de 15 g/L. Or cette teneur moyenne pourrait aussi bien être du double, portant le stock à Amélie à 40 000 tonnes de chlorures sur un demi-kilomètre carré.

En conclusion sur cet aspect du problème, on notera que les 3 méthodes de calcul décrites ci-dessus, basées sur des hypothèses différentes et comportant chacune une part d'imprécision due au mode de calcul choisi et aux aspects physiques négligés dans chaque cas, présentent toutes une incertitude importante et que les évaluations du tonnage de sel contenu dans la nappe doivent être considérées avec beaucoup de précaution.

|                     |          |                | Différence avec le |
|---------------------|----------|----------------|--------------------|
| Secteur             | Couche   | Tonnage CI (t) | cubage manuel      |
| Amélie-Fernand-Anna | Couche 1 | 1504           | -33509             |
|                     | Couche 2 | 59606          | 4045               |
|                     | Couche 3 | 16461          | -33355             |
|                     | Total    | 77571          | -62819             |
| Joseph-Else         | Couche 1 | 5119           | 1544               |
|                     | Couche 2 | 35256          | 28575              |
|                     | Couche 3 | 6436           | -8657              |
|                     | Total    | 46811          | 21463              |
| Langue Est          | Couche 1 | 0              | -3821              |
|                     | Couche 2 | 13070          | -47766             |
|                     | Couche 3 | 37163          | 14844              |
|                     | Total    | 50233          | -36743             |
| Langue Ouest        | Couche 1 | 7167           | -8537              |
|                     | Couche 2 | 57893          | -8812              |
|                     | Couche 3 | 38227          | 12780              |
|                     | Total    | 103287         | -4570              |
| Marie-Louise        | Couche 1 | 3442           | -889               |
|                     | Couche 2 | 8178           | -6711              |
|                     | Couche 3 | 3089           | -19316             |
|                     | Total    | 14709          | -26916             |
| Theodore-Eugene     | Couche 1 | 4616           | -4304              |
|                     | Couche 2 | 27702          | -8708              |
|                     | Couche 3 | 7512           | -666               |
|                     | Total    | 39830          | -13678             |
| Grand total         | Couche 1 | 21848          | -49515             |
|                     | Couche 2 | 201705         | -39376             |
|                     | Couche 3 | 108889         | -34371             |
|                     | Total    | 332442         | -123262            |

Tableau 11 – Calcul du tonnage de chlorures dans la nappe en 2004

# 4.3.9. Conclusions sur le calage

Si l'on considère la complexité du problème à traiter :

- complexité de la géométrie induisant des risques de dénoyage et de problèmes numériques : couches d'épaisseur très variable, disparaissant localement ; épaisseur très faible dans le Bassin Potassique; zone d'affaissement de la topographie ; forte hétérogénéité des paramètres physiques ;
- complexité des phénomènes pris en compte impliquant un grand nombre de paramètres à caler : interactions dynamiques entre aquifère et réseau

hydrographique (rivières, canaux, drains); transport de masse avec de forts gradients au voisinage des terrils source;

le calage réalisé est assez satisfaisant.

Les défauts du modèle apparaissent essentiellement au voisinage immédiat des terrils et ne devraient pas pénaliser la simulation à long terme du devenir des langues aval.

# 5. Scénarios d'exploitation

Suite au calage du modèle, différents scénarios d'exploitation ont été simulés à la demande du Comité de Pilotage. Ils sont résumés dans le tableau ci-dessous.

| Scénario                    | Période 1991-2004                                           | Période 2004-2014                                                                            | Période 2014-2027                                                                        |
|-----------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Scénario<br>tendanciel      |                                                             | Prévisions d'arrêt<br>successif des<br>pompages par les<br>MDPA                              | Tous les pompages de<br>fixation/dépollution sont<br>à l'arrêt                           |
| Scénario 1                  |                                                             | Les pompages de<br>fixation/dépollution sont<br>maintenus au régime<br>2005-2006             | Les pompages de<br>fixation/dépollution à<br>moins de 200 mg/L en<br>2014 sont à l'arrêt |
| Scénarios 1<br>bis et 1 ter |                                                             | Comme scénario 1<br>avec différentes<br>hypothèses sur le<br>fonctionnement des<br>puits EBE |                                                                                          |
| Scénario 2                  | Source supplémentaire<br>entre Ungersheim et<br>Raedersheim |                                                                                              |                                                                                          |

Tableau 12 – Scénarios d'exploitation du modèle

# **5.1. SCENARIO TENDANCIEL**

# 5.1.1. Définition du scénario

Ce scénario prévisionnel correspond aux hypothèses suivantes :

- simulation de décembre 2004 à décembre 2014 ;
- répétition des données des cycles hydroclimatiques de 1991 à 2000 ;
- valeurs 2004 des concentrations des rivières conservées ;
- arrêt de l'infiltration sous le terril de l'Ochsenfeld à partir de 2005 ;
- prélèvements et flux de masse de 2004 à 2014 selon les prévisions actuelles des MDPA (*cf.* annexe 5)



5.1.2. Cartes simulées en 2014





Figure 36 - Scénario tendanciel – concentrations en 2014 (mg/L) – couche 2



Figure 37 - Scénario tendanciel – concentrations en 2014 (mg/L) – couche 3

# 5.1.3. Suite du scénario tendanciel

En fin 2014, on arrête tous les prélèvements aux puits de fixation/dépollution et on poursuit la simulation jusqu'en 2027.

Les figures 38 à 40 présentent les résultats obtenus en 2027. On constate que la couche 1 est pratiquement totalement nettoyée. Pour ce qui est de la couche 2, seule la langue Est est totalement nettoyée en 2027. En couche 3, il reste une petite zone à teneur supérieure à 200 mg/L dans la langue Est.

La langue Ouest se nettoie beaucoup plus lentement du fait de plus faibles perméabilités en couches 2 et 3, en particulier à l'aval des terrils Alex et Marie-Louise.



Figure 38 - Scénario tendanciel – concentrations en 2027 (mg/L) – couche 1



Figure 39 - Scénario tendanciel – concentrations en 2027 (mg/L) – couche 2





# 5.2. SCENARIO 1

#### 5.2.1. Définition du scénario

Ce scénario prévisionnel correspond aux hypothèses suivantes :

- simulation de décembre 2004 à décembre 2014 ;
- répétition des données des cycles hydroclimatiques de 1991 à 2000 ;
- valeurs 2004 des concentrations des rivières conservées ;
- arrêt de l'infiltration sous le terril de l'Ochsenfeld à partir de 2005 ;
- prélèvements de 2006 conservés pour les puits de fixation/dépollution
- flux de masse de 2004 à 2014 selon scénario MDPA.



5.2.2. Cartes simulées en 2014

Figure 41 – Scénario 1 – concentrations en 2014 (mg/L) – couche 1

Les différences avec les résultats du scénario tendanciel (fig. 35 à 37) sont faibles et limitées au voisinage des terrils.



Figure 42 - Scénario 1 – concentrations en 2014 (mg/L) – couche 2



Figure 43 - Scénario 1 – concentrations en 2014 (mg/L) – couche 3

# 5.2.3. Cartes des écarts entre scénario tendanciel et scénario 1 en 2014

Les figures 44 à 46 sont obtenues en soustrayant les concentrations calculées avec le scénario 1 de celles calculées avec le scénario tendanciel en 2014.

On a dû définir une nouvelle échelle ; à noter que certaines plages de valeur sont négatives ; ce qui signifie qu'il existe des zones (réduites) où le scénario 1 produit une concentration plus élevée que le tendanciel.



Figure 44 – Ecarts en mg/L entre concentrations en 2014 calculées avec le scénario tendanciel et avec le scénario 1 (couche 1)

L'examen des 3 couches montre que des différences importantes (> 50 mg/L en valeur absolue) n'apparaissent que dans le Bassin Potassique, en particulier à l'aval du terril Fernand où les écarts atteignent de l'ordre de 500 mg/L dans la couche 1, 1000 mg/L dans la couche 2 puis à nouveau 500 mg/L dans la couche 3.

Globalement les très forts écarts (-500 à -300 et 1000 à 2000) sont limités à des zones restreintes à l'aval immédiat de certains terrils, soit Fernand, Joseph Else Est, Amélie Nord et Alex-Rodolphe pour la couche 2 et au voisinage des terrils d'Ensisheim pour la couche 3.



Figure 45 - Ecarts en mg/L entre concentrations en 2014 calculées avec le scénario tendanciel et avec le scénario 1 (couche 2)



Figure 46 - Ecarts en mg/L entre concentrations en 2014 calculées avec le scénario tendanciel et avec le scénario 1 (couche 3)

# 5.2.4. Suite du scénario 1

En 2014, on arrête les puits de fixation/dépollution dont la teneur est descendue en dessous de 200 mg/L et on reprend la simulation jusqu'en 2027.

Les flux de masse sous les terrils sont tous nuls sur cette période.

# a) Pompages non arrêtés

On trouvera ci-après le tableau des pompages qui ne sont pas arrêtés en 2014.

| Indice     | LIEU_DIT                       | Nom_MDPA               | Nature des puits  |
|------------|--------------------------------|------------------------|-------------------|
| 04131X0409 | Ungersheim                     | PF Ungersheim          | Dépollution       |
| 04131X0418 | AIRE DE STOCKAGE               | Piézo 413-1-418 Amélie | Dépollution       |
| 04131X0419 | AIRE DE STOCKAGE               | Piézo 413-1-419 Amélie | Dépollution       |
| 04132X0074 | CITE SAINTE BARBE (RUELISHEIM) | Ruelisheim             | Dépollution       |
| 04132X0075 | CITE SAINTE BARBE (RUELISHEIM) | Ruelisheim             | Dépollution       |
| 04132X0230 | CITE ENSISHEIM                 | Ensisheim 1            | Dépollution       |
| 04132X0383 |                                | Ensisheim Sud          | Dépollution       |
| 04132X0393 |                                | Ensisheim Sud          | Dépollution       |
| 04132X0394 |                                | Puits Ungersheim 2     | Dépollution       |
| 04132X0395 |                                | Ensisheim Sud          | Dépollution       |
| 04132X0397 |                                | Ensisheim Sud          | Dépollution       |
| 04132X0398 |                                | Ensisheim Sud          | Dépollution       |
| 04131X0444 |                                | PF Rodolphe            | Puits de fixation |
| 04131X0559 | VA10                           | Amélie n° 10           | Puits de fixation |
| 04132X0291 |                                | PF Fernand             | Puits de fixation |
| 04132X0399 |                                | Anna 1                 | Puits de fixation |

Tableau 13 – Pompages non arrêtés en 2014 pour le scénario 1

# b) Cartes simulées en 2027

Elles sont présentées aux figures 47 à 49. Ces cartes sont très peu différentes de celles obtenues avec le scénario tendanciel en 2027 (fig. 38 à 40).



Figure 47 – Scénario 1 – concentrations en 2027 (mg/L) – couche 1



Figure 48 - Scénario 1 – concentrations en 2027 (mg/L) – couche 2



Figure 49 - Scénario 1 – concentrations en 2027 (mg/L) – couche 3

# 5.2.5. Cartes des écarts entre scénario tendanciel et scénario 1 en 2027

Les figures 50 à 52 sont obtenues en soustrayant les concentrations calculées avec le scénario 1 de celles calculées avec le scénario tendanciel en 2027.

On a repris l'échelle définie pour les écarts en 2014. Les résultats sont les suivants par couche :

- pour la couche 1, les écarts sont limités à une zone atteignant environ 70 mg/L en aval de Fernand
- pour la couche 2, les écarts dans la langue Est montent jusqu'à environ 200 mg/L; comme en 2014, il apparaît une zone d'écart important (jusqu'à 800 mg/L) mais d'extension réduite à l'aval de Alex-Rodolphe
- pour la couche 3, la zone d'écarts de la langue Est s'élargit avec une pointe autour de 120 mg/L sur la rive droite de l'III ; par ailleurs, une zone d'écart atteignant 1000 mg/L, d'extension très faible, apparaît auprès des terrils d'Ensisheim, comme en 2014.



Figure 50 - Ecarts en mg/L entre concentrations en 2027 calculées avec le scénario tendanciel et avec le scénario 1 (couche 1)



Figure 51 - Ecarts en mg/L entre concentrations en 2027 calculées avec le scénario tendanciel et avec le scénario 1 (couche 2)



Figure 52 - Ecarts en mg/L entre concentrations en 2027 calculées avec le scénario tendanciel et avec le scénario 1 (couche 3)

# 5.3. SCENARIO 1 TER

Pour mémoire : une première variante du scénario 1 (scénario 1 bis) avait été réalisée dans un premier temps ; cette variante reprenait les conditions du scénario 1 avec arrêt des prélèvements aux puits EBE en 2006.

Les résultats différaient très peu de ceux du scénario 1 du fait de la forte réduction effective des prélèvements EBE à partir de 2004.

Un scénario 1 ter a été proposé lors de la réunion du Comité de Pilotage du 30 Novembre 2005.

# 5.3.1. Définition du scénario

C'est une variante du scénario 1 pour laquelle, au contraire du scénario 1 bis, on garde les prélèvements de 2003 aux puits EBE jusqu'à la fin de la période de simulation.

En 2014, on arrête les puits de fixation/dépollution dont la teneur est descendue en dessous de 200 mg/L et on reprend la simulation jusqu'en 2027.

On constate que les pompages qui continuent sont les mêmes que pour le scénario 1 (tableau 13) ce qui n'a rien de surprenant.

# 5.3.2. Cartes des écarts entre scénario 1 et scénario 1 ter en 2027

Les résultats en 2014 et en 2027 étant très voisins d'un scénario à l'autre, on a représenté aux figures 53 à 55 les cartes obtenues en 2027 en soustrayant les concentrations calculées avec le scénario 1 ter de celles calculées avec le scénario 1.

On a dû définir une nouvelle échelle.



Figure 53 – Ecarts en mg/L entre concentrations en 2027 calculées avec scénario 1 et avec scénario 1 ter (couche 1)

On constate que les différences sont faibles et limitées au voisinage des puits EBE.

Il n'y a pas non plus de différence significative sur l'évolution des tonnages (§ suivant).



Figure 54 - Ecarts en mg/L entre concentrations en 2027 calculées avec scénario 1 et avec scénario 1 ter (couche 2)



Figure 55 - Ecarts en mg/L entre concentrations en 2027 calculées avec scénario 1 et avec scénario 1 ter (couche 3)
### **5.4. CALCULS DE TONNAGE**

Le tonnage de chlorures présents dans la nappe d'après la simulation a été calculé pour les deux premiers scénarios, à la teneur de coupure de 250 mg/L, en prenant en compte la géométrie du modèle (épaisseurs mouillées des alluvions) et les porosités issues du calage du transport. Les surfaces et volumes en jeu sont également fournis ci-après.

| Résultats des simulations à la coupure de 250 mg/L |       |          |          |          |        |  |  |
|----------------------------------------------------|-------|----------|----------|----------|--------|--|--|
|                                                    | Année | Couche 1 | Couche 2 | Couche 3 | Total  |  |  |
|                                                    | 1991  | 133827   | 299894   | 183954   | 617674 |  |  |
|                                                    | 2004  | 21848    | 202127   | 109340   | 333316 |  |  |
| Scénario 1                                         | 2014  | 4115     | 78611    | 49723    | 132449 |  |  |
| Scénario 1                                         | 2027  | 77       | 51688    | 22890    | 74655  |  |  |
|                                                    |       |          |          |          |        |  |  |
|                                                    | Année | Couche 1 | Couche 2 | Couche 3 | Total  |  |  |
|                                                    | 1991  | 133827   | 299894   | 183954   | 617674 |  |  |
|                                                    | 2004  | 21848    | 202127   | 109340   | 333316 |  |  |
| Tendanciel                                         | 2014  | 6704     | 87364    | 51855    | 145923 |  |  |
| Tendanciel                                         | 2027  | 176      | 52530    | 23427    | 76133  |  |  |

Tableau 14 – Calcul du tonnage de chlorures dans la nappe pour le scénario tendanciel et le scénario 1

Malgré les incertitudes en jeu, l'évolution de ces tonnages est significative ainsi que la comparaison entre deux scénarios. On peut ainsi conforter l'analyse faite plus haut de la faible différence entre le scénario tendanciel et le scénario 1, qui aboutissent à des tonnages très proches en 2027. Le scénario 1, en conservant en fonctionnement tous les puits de fixation/dépollution jusqu'en 2014 puis en les arrêtant seulement lorsque leur concentration tombe en dessous de 200 mg/L, permet d'accélérer la dépollution à l'horizon 2014. La conclusion que l'on peut en tirer est que le scénario tendanciel est déjà bien optimisé et ne nécessite que quelques ajustements pour en maximiser l'efficacité.

|                     | Année | Surface<br>> 200 mg/L | Volume total<br>> 200 mg/L | Surface<br>> 250 mg/L | Volume total<br>> 250 mg/L |
|---------------------|-------|-----------------------|----------------------------|-----------------------|----------------------------|
| Etat initial        | 2004  | 62 km²                | 609 Mm <sup>3</sup>        | 45.75 km²             | 407 Mm <sup>3</sup>        |
| Scénario tendanciel | 2014  | 32.0 km²              | 399 Mm <sup>3</sup>        | 25.5 km²              | 275 Mm <sup>3</sup>        |
| Scénario tendanciel | 2027  | 13.0 km²              | 219 Mm <sup>3</sup>        | 10.0 km²              | 146 Mm <sup>3</sup>        |
| Scénario 1          | 2014  | 28.75 km <sup>2</sup> | 372 Mm <sup>3</sup>        | 23.75 km <sup>2</sup> | 248 Mm <sup>3</sup>        |
| Scénario 1          | 2027  | 12.5 km <sup>2</sup>  | 207 Mm <sup>3</sup>        | 9.75 km²              | 144 Mm <sup>3</sup>        |

Tableau 15 – Surfaces et volumes de nappe

Afin de pouvoir se rapporter à d'autres indicateurs dans le cadre de la DCE notamment, le tableau 15 présente aussi les surfaces et volumes d'eau de la nappe au-dessus de 200 et 250 mg/L pour les deux principaux scénarios. Les surfaces ont été calculées de façon à être comparables à celles des cartographies annuelles de la salure qui représentent une moyenne de la salinité jusqu'à une profondeur de 40 m : ce sont celles des couches 1 et 2 du modèle dans le bassin potassique (partie gigogne du modèle), et de la couche 1 seule dans la partie rhénane.

### 5.5. SCENARIO 2

### 5.5.1. Définition du scénario

Ce dernier scénario contrairement aux précédents n'est pas un scénario prévisionnel. Il a pour objectif de tenter d'expliquer les évolutions observées aux puits de Colmar qui montrent des teneurs en augmentation que le modèle ne reproduit pas (annexe 4 et fig. 57).

On observe sur le puits Neuland une teneur qui augmente depuis 1991 alors que sur le puits Dornig, situé plus en aval, la teneur n'augmente que depuis 1995 : ceci pourrait être l'indice d'une arrivée de salure non prise en compte dans le modèle.

Il a donc été décidé de reprendre la simulation de 1991 à 2004 en ajoutant une source de chlorures supplémentaire à l'Ouest d'Ungersheim et d'examiner l'impact de cette source sur les puits de la langue Ouest, en particulier ceux de Colmar.

L'hypothèse d'une source de saumure profonde localisée à l'Ouest d'Ungersheim a été obtenue par des campagnes géophysiques. L'impact probable de cette source apparaît aux puits EBE à partir de 1975 (fig. 56).

La simulation du transport des chlorures de 1991 à 2004 doit permettre de vérifier que c'est bien la même source qui provoque une augmentation des chlorures aux puits de Colmar à partir de 1994 (fig. 57).



Figure 56 - Historique des teneurs en chlorures aux puits EBE



Figure 57 - Historique des teneurs en chlorures aux puits de Colmar

Cette simulation nécessite de retravailler la carte de salure initiale en 1991 en fonction de cette hypothèse. Pour cela les trajectoires issues de la source supposée et des terrils Alex-Rodolphe et Marie-Louise ont été tracées. On constate qu'il faut déjà une dizaine d'années pour que la salure issue de la source arrive à EBE, puis 14 ans pour faire le trajet depuis EBE jusqu'à rejoindre la Vieille Thur à la hauteur du dôme de Hettenschlag.

Ce travail amène à dessiner 2 panaches distincts dans la langue Ouest en 1991. Le premier panache issu des terrils longe la Vieille Thur et la croise un peu au Nord de Munwiller. Le deuxième panache issu de la source supposée suit une trajectoire plus à l'Ouest pour rejoindre la Vieille Thur au niveau du dôme de Hettenschlag. Les

concentrations en chlorures de ces panaches ont été ajustées sur les valeurs effectivement mesurées en 1991

### 5.5.2. Nouvelles données

### a) Concentrations initiales

Les cartes de la salure initiale en 1991 sont donc modifiées comme indiqué ci-dessus. On présente les résultats pour les couches 2 et 3 aux figures 58 et 59 (à comparer aux cartes initiales des figures 8 et 9). La salure de la couche 1, peu modifiée, n'est pas dessinée.



Figure 58 – Carte modifiée des concentrations en chlorures en 1991 – couche 2



Figure 59 - Carte modifiée des concentrations en chlorures en 1991 – couche 3

Sur ces cartes on a également reporté les trajectoires sur 14 ans depuis la source supposée et les terrils Alex-Rodolphe et Marie-Louise.

### b) Tonnage imposé sur la nouvelle source de salure

Un flux de masse est imposé sur la superficie de la nouvelle source qui a été délimitée à l'aide de la géophysique. Ce flux est imposé sur la couche 3 seulement.

Différents essais dont on observe l'impact sur les cartes de salure en 2004 et les évolutions aux piézomètres de la langue Ouest amènent à prendre en compte un flux de masse correspondant à 300 T de CI- par an émanant de cette source.

### 5.5.3. Résultats

### a) Cartes de concentration en 2004

On les présente aux figures 60 et 61 comme au § 4.3.7 en comparaison avec les cartes observées. Les résultats pour la couche 1 qui sont peu différents des précédents ne sont pas présentés.

Si on compare aux résultats du calage (fig. 33 – 34), on constate que :

- pour la couche 2, la nouvelle carte simulée est en bon accord avec la carte observée et même mieux qu'avant pour la langue Ouest grâce à la présence de la nouvelle source;
- pour la couche 3, l'impact sur la langue Ouest est un peu plus fort qu'auparavant (mais c'est peut-être la carte observée qui est imprécise).

Globalement, la restitution est satisfaisante au niveau des cartes 2004.

#### b) Impact sur les historiques de la langue Ouest

Pour mettre en évidence l'impact de la nouvelle source sur les historiques, on a représenté aux figures 62 à 65 les nouvelles évolutions aux piézomètres impactés en les comparant aux évolutions précédemment calculées lors du calage (présentées en totalité en annexe 4).

On observe un impact net et positif (améliorant le calage pour au moins une des couches) sur 3 piézomètres : Mattenmuhl, Rouffach, Munwiller. Par contre, sur le puits EBE F6, l'impact est trop fort.

La figure 66 présente l'évolution au puits EBE F3 (non simulé au cours du calage) ; l'évolution est bien simulée.

Par contre, les piézomètres de Colmar (fig. 67 et 68) ne sont pas impactés de façon visible par cette nouvelle source de salure. La simulation par le modèle ne permet donc pas de reproduire l'impact supposé d'une source de salure supplémentaire sur les puits de Colmar.

Ce résultat n'est pas vraiment satisfaisant car pour l'instant aucune des simulations ne permet de reproduire l'augmentation des concentrations en chlorures aux puits de Colmar à partir de 1994. La source de chlorures entre Ungersheim et Raedersheim est peut-être sous-estimée dans la simulation, car elle a été calée en fonction des concentrations observées dans les puits proches sans tenir compte de l'effet densitaire éventuel d'une saumure très concentrée. La concentration initiale du panache en provenance de cette source utilisée dans la simulation (état 1991) a peut-être également été sous-estimée en l'absence de données sur la salure profonde à cette époque.

Il serait évidemment très utile d'avoir une idée plus précise de la dimension, de la concentration en chlorures et de la composition de cette source.



Figure 60 – Scénario 2 : concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) - couche 2



Figure 61 - Scénario 2 : concentrations observées (en haut) et simulées (en bas) en 2004 (mg/L) - couche 3







En bas :avec le scénario 2

Note : le fond coloré des graphiques correspond à l'échelle de couleur adoptée pour les tranches de concentrations en chlorures des cartographies. Cette présentation permet de relativiser les différences entre les courbes simulée et observée lorsqu'elles sont toutes deux dans la même tranche de concentrations.





Figure 63 - Evolutions comparées au piézo 3782X0140

En bas :avec le scénario 2





Figure 64 - Evolutions comparées au piézo 3786X0087

En bas :avec le scénario 2





Figure 65 - Evolutions comparées au puits EBE F6

En bas :avec le scénario 2



Figure 66 – Evolution au puits EBE F3 – scénario 2 (non simulé au cours du calage)



Figure 67 – Evolution au puits Neuland – scénario 2



Figure 68 – Evolution au puits Dornig – scénario 2

## 6. Conclusions

L'objectif de cette étude était la mise au point d'un modèle hydrodynamique de gestion de la pollution saline de la nappe d'Alsace au droit et en aval du Bassin Potassique. Ce modèle devait permettre de suivre l'évolution de la salure dans le temps et d'évaluer l'impact de différents scénarios d'arrêt des pompages de fixation ou de dépollution des MDPA, pour apporter une aide à la décision.

Malgré des imprécisions au voisinage immédiat des terrils où les effets densitaires sont très importants et où l'impact des opérations de dissolution accélérée n'a pu être pris en compte, la restitution en fin de calage du modèle des cartes historiques des chlorures et des chroniques de concentration observées est globalement satisfaisante.

Certaines différences entre les prévisions du modèle et les cartes de salure tracées dans des secteurs où il existe peu de piézomètres mériteraient des investigations géophysiques de contrôle, notamment à l'aval des terrils Joseph Else où le modèle montre un écoulement de salure vers le NE dont l'existence ne peut être confirmée ou infirmée en l'absence de piézomètres.

| Scénario               | Période 1991-2004                                           | Période 2004-2014                                                                | Période 2014-2027                                                                        |
|------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Scénario<br>tendanciel |                                                             | Prévisions d'arrêt<br>successif des<br>pompages par les<br>MDPA                  | Tous les pompages de<br>fixation/dépollution sont<br>à l'arrêt                           |
| Scénario 1             |                                                             | Les pompages de<br>fixation/dépollution sont<br>maintenus au régime<br>2005-2006 | Les pompages de<br>fixation/dépollution à<br>moins de 200 mg/L en<br>2014 sont à l'arrêt |
| Scénario 2             | Source supplémentaire<br>entre Ungersheim et<br>Raedersheim |                                                                                  |                                                                                          |

సా ళు

Tableau 16 – Principaux scénarios d'exploitation du modèle

Après finalisation du calage du modèle, différents scénarios d'exploitation ont été mis en œuvre pour la prévision de l'évolution future de la salure dans la zone d'étude. Le scénario dit tendanciel est bâti d'après les prévisions actuelles des MDPA sur le traitement des terrils et l'abandon progressif des pompages de dépollution et de fixation. La simulation indique que les langues aval devraient être nettoyées en surface mais pas en profondeur en 2014. Le scénario tendanciel est comparé au scénario 1, scénario où l'on maintiendrait tous les pompages existant en 2006 en fonctionnement jusqu'en 2014. Les résultats de la simulation jusqu'en 2014 montrent peu de différences entre le scénario tendanciel et le scénario 1.

La différence la plus significative apparaît dans l'extrémité aval de la langue salée issue du bassin potassique jusqu'à Ensisheim. On en conclut qu'il serait probablement utile de conserver les puits des barrages hydrauliques au Sud d'Ensisheim en fonctionnement plus longtemps que prévu actuellement par les MDPA dans le scénario tendanciel.

Le scénario tendanciel est ensuite simulé jusqu'en 2027 après l'arrêt de tous les pompages de dépollution en 2014. Le scénario 1 est également prolongé jusqu'en 2027 en arrêtant en 2014 les pompages où la teneur en chlorures est descendue en dessous de 200 mg/L. La simulation montre que dans les deux cas le bon état (teneurs en dessous de 250 mg/L) est atteint dans la couche superficielle, mais qu'il reste des concentrations élevées en profondeur à l'aval d'Alex-Rodolphe (au début de la langue Ouest) et dans le bassin potassique.

Cela signifie qu'il faudra probablement maintenir des pompages en service dans certains secteurs de salure profonde après l'échéance de 2014. Le modèle n'est cependant pas encore assez fiable à si long terme pour pouvoir être plus précis sur ce point : l'optimisation de ces derniers pompages sera à faire au fur et à mesure en fonction des résultats effectivement acquis.

Le scénario 1 est comparé à un scénario 1 ter, dans lequel on maintient en pompage les puits du champ captant d'EBE au rythme des années antérieures à 2003 (les volumes pompés à EBE ont en effet été très fortement réduits à partir de 2004). On constate que la différence entre les deux scénarios est négligeable en 2027.

Un scénario 2 a également été réalisé pour examiner l'impact possible d'une source de chlorures naturels dont on suppose l'existence entre Raedersheim et Ungersheim. La prise en compte de cette source permet d'améliorer la simulation de l'évolution de la langue Ouest de 1991 à 2004, mais ne montre pas l'impact que l'on supposait sur les puits AEP de la Ville de Colmar.

& S

Parmi les développements envisageables dans l'avenir pour tenter d'améliorer les performances du modèle, il conviendrait d'étudier comment prendre en compte la dissolution accélérée, d'utiliser une méthode de calcul du transport adaptée aux forts contrastes de concentration, ainsi que d'introduire le calcul des effets densitaires au voisinage immédiat des terrils.

En effet les modélisations prenant en compte l'effet densitaire montrent que lorsqu'on atteint 100 g/L de chlorures l'écoulement hydrodynamique devient négligeable devant l'effet gravitaire dû à la densité du fluide (Regierungspräsidium Freiburg 2002). Or les eaux d'infiltration sous un terril en dissolution accélérée atteignent couramment 200 g/L (analyses des eaux de relevage). Il se développe ainsi une lentille de saumure dense sous le terril, qui peut rester piégée dans les dépressions du substratum.

On peut donc penser qu'une prise en compte des dissolutions accélérées et de l'effet densitaire des infiltrations sous les terrils permettraient de mieux simuler l'évolution des concentrations en chlorures dans les puits de fixation, de mieux prendre en compte la fixation des saumures denses au voisinage des terrils et d'améliorer la simulation de l'impact aval des terrils, notamment de Marie-Louise et Joseph Else (après contrôle de la réalité de l'impact vers le NE prédit par le modèle pour ce dernier terril).

On attendrait également de ces développements une meilleure simulation des tonnages de chlorures, apparemment sous-estimés par le modèle si on les compare aux estimations faites par d'autres méthodes et une plus grande fiabilité de la prédiction de l'état de la nappe aux échéances fixées par la DCE.

## 7. Bibliographie

**BURGEAP-IMF** Strasbourg (1996) - Région ALSACE - Projet LIFE - Modélisation des secteurs de Colmar et de Mulhouse/Bâle en régime permanent pour les Hautes Eaux et les Moyennes Eaux.

**Elsass P., Rau S**. (1995) - Coupes hydrogéologiques Strasbourg-Offenburg. Notice. Initiative communautaire INTERREG, Cartographie hydrogéologique du Rhin supérieur. Région Alsace, Strasbourg, avril 1995.

**Graillat A., Brunck R.** (1980) – Direction interdépartementale de l'industrie région Alsace. Les terrils du bassin potassique. Etude en vue de leur neutralisation vis à vis de la pollution saline des eaux phréatiques et de leur insertion dans le paysage. Novembre 1980.

**GLA** (1977) - Hydrogeologische Karte von Baden-Württemberg. Oberrheingebiet, Bereich Kaiserstuhl-Markgräflerland. Geologisches Landesamt Baden-Württemberg, Freiburg i. Br., Allemagne.

**Herrmann A., Stober I.** (1996) - Mächtigkeiten der gut durchlässigen Schichten in den quartären Kieslagern des Oberrheingrabens zwischen Basel und der Nordgrenze des Lkr. Karlsruhe. Rapport GLA 2924.01/96-4763, Freiburg i. Br., sept. 1996.

**Herrmann A., Meinken W., Stober I.** (1996) - Durchlässigkeiten im Quartär des Oberrheingrabens zwischen Basel und der Nordgrenze des Lkr. Karlsruhe. Rapport GLA 1107.01/96-4763, Freiburg i. Br., mars 1996.

LfU (1996) – Projet de démonstration pour la protection et la gestion de la nappe franco-germano-suisse du Rhin supérieur. Demonstrationsvorhaben zum Schutz und zur Bewirtschaftung des Grundwassers des deutsch-französisch-schweizerischen Oberrheingrabens. LIFE Abschlussbericht, Karlsruhe.

**Martin J.C., Elsass P., Noyer M.L.** (1997) – Modèle de la nappe d'Alsace. Projet de développement 312 – Rapport d'avancement n°1. Rap. BRGM R 39661.

**MDPA** (1991) – Sol et sous-sol. Les affaissements miniers. Potasse magazine N°101, novembre 1991, p. 4-6.

**Noyer M.L., Menjoz A., Elsass P., Thiéry D., Martin J.C**. (1998) – Modèle de la nappe d'Alsace. Projet de développement 312. Rapport final. Rapport BRGM R 40335.

**REGIERUNGSPRÄSIDIUM FREIBURG** (2002) – Reconnaissance transfrontalière de l'aquifère profond dans la bande rhénane entre Fessenheim et Breisach. Rapport final projet Interreg II.

**Thiéry D.** (1995) Modélisation 3D du transport de masse avec le logiciel MARTHE version 5.4. Rapport BRGM R 38149 DR/HYT 95.

**Thiéry D.** (2003) Logiciel GARDÉNIA version 6.0. Guide d'utilisation. Rapport BRGM RP52832-FR

# Annexe 1 Débits mensuels aux stations de jaugeage





















### Annexe 2

## Calage de l'hydrodynamique : historiques de charge



#### a) Partie est du modèle















### b) Partie ouest du modèle























### Annexe 3

# Calage de l'hydrodynamique : historiques de débit aux stations de jaugeage










## Annexe 4

# Calage du transport : historiques de salure aux piézomètres et puits de fixation

#### a) Piézomètres - langue Ouest du Nord au Sud





Note : le fond coloré des graphiques correspond à l'échelle de couleur adoptée pour les tranches de concentrations en chlorures des cartographies.





















#### b) Piézomètres - langue Est du Nord au Sud















#### c) Puits de fixation



































# Annexe 5

# Evolution des pompages et définition du scénario tendanciel

On trouvera ci-après le document émanant des MDPA et présentant les hypothèses actuelles d'évolution des pompages aux puits de dépollution et fixation.

Ces hypothèses correspondent au scénario dit « tendanciel ».



Wittelsheim, le 18 janvier 2006

**Direction de l'Environnement** 

# **Evolution pompages**

# Scénario tendanciel

Les pompages des MDPA ne sont pas immuables. Ils ont évolué ces dernières années et évolueront encore progressivement jusqu'à la fin du programme de dessalage de la nappe phréatique.

Au niveau quantitatif, les pompages et donc les rejets au saumoduc, qui dépassaient 100 000 m<sup>3</sup>/jour il y a trois ans, ont été réduits à 80 000 m<sup>3</sup>/j. La réduction continuera progressivement.

### **1. GENERALITES**

Il faut distinguer plusieurs types d'ouvrages :

- les puits de dépollution,
- les puits de fixation.

Les puits de fixation sont des puits de dépollution situés à l'aval immédiat des terrils et captant le sel infiltré des terrils avant qu'il ne se propage plus en aval dans la nappe. Les puits de dépollution complètent le dispositif pour réhabiliter la nappe en interceptant, à l'aval des langues salées, le sel se propageant depuis souvent de nombreuses années.

Depuis la signature de la Stratégie Globale par le préfet du Haut Rhin en 1998, 20 nouveaux ouvrages de fixation et de dépollution, la plupart profonds, ont été mis en

place. Ils ont complété ou remplacé en partie les 48 ouvrages en service avant 1998.

L'efficacité des ouvrages profonds, l'optimisation de la marche des pompages, et le traitement des terrils ont permis de quadrupler rapidement l'extraction nette de sel de la nappe.

La quantité de sel contenue dans la nappe, qui a atteint près de 3 millions de tonnes sur une superficie dépassant la potabilité d'environ 150 km<sup>2</sup> il y a 20 ans, est descendue à moins de 0,6 Mt sur environ 50 km<sup>2</sup> à fin 2005, grâce à une extraction nette de près de 0,2 Mt/an ces dernières années.

Pendant la dernière décennie, les infiltrations de sel des terrils ont alimenté la nappe chaque année de 4,5 à 5,5 % du stock annuel ; l'extraction de sel par les pompages est passée de 7-8 % à plus de 30 % du stock annuel (cf. graphique joint).

Depuis sept ans, dix sept ouvrages ont été arrêtés dès que leur contribution à la dépollution ne se justifiait plus: 2 puits de fixation et 4 puits de dépollution à Ensisheim, 4 à Max, 1 à Théodore, 2 à Alex et 4 à Bollwiller-Rodolphe.

Le nombre d'ouvrages en service, qui a atteint 60 au maximum en 2003, est descendu à 51 en 2005. Il comprend 31 puits de fixation et 20 de dépollution.

### 2.ECHEANCIER

L'échéancier du fonctionnement de ces ouvrages est le suivant :

#### 2.1. Puits de dépollution

#### 2.1.1. Langue ouest

- 2 puits de dépollution à l'aval des terrils Alex-Rodolphe constituant la barrière hydraulique de cette langue. Ils interceptent bien la langue salée. Les teneurs sont en diminution sensible ces deux dernières années, indiquant une dilution sur les bordures de la langue. La dépollution, liée en partie à la fixation des terrils, devrait continuer efficacement environ 5 ans. Débit : 65 m<sup>3</sup>/h.
- Les 4 puits de dépollution Rodolphe-aire de la Thur ont été arrêtés récemment. Le dispositif de fixation étant très performant pour le terril Marie Louise en amont, ces puits ne présentaient plus beaucoup d'intérêt pour la dépollution, d'autant plus qu'ils sont en amont du puits de fixation Rodolphe.

#### 2.1.2. Langue est

3 puits de dépollution Ensisheim cité, situés à l'est du captage cité (7 puits) fournissant dans le passé l'eau industrielle à la fabrique Marie Louise; ils alimentent la dissolution accélérée du terril Marie Louise dont la fin est programmée pour 2007.

Les autres puits d'Ensisheim (carreau et cité) étant arrêtés, ils constituent la dernière barrière de dépollution de la langue est. Situés à l'aval de la barrière hydraulique de dépollution

Ensisheim sud - Ruelisheim, ces puits, de capacité actuelle 850m<sup>3</sup>/h, devraient pouvoir être arrêtés entre 2008 et 2009, le front entre 700 et 200 mg/l se déplaçant d'ouest en est.

- 7 puits de dépollution constituant la barrière hydraulique de la langue est à Ensisheim sud (5 puits profonds) et Ruelisheim (2 puits non profonds); ces puits sont raccordés directement au pipe avant son débouché dans la rigole bétonnée du saumoduc. D'un débit total de 720 m<sup>3</sup>/h, la plupart seront maintenus en service jusqu'à la fin des opérations de dépollution (2013). Le puits profond situé à l'ouest et les 2 puits non profonds à l'est pourraient être arrêtés entre 2010 et 2011.
- 3 puits Gravière Max (30 m<sup>3</sup>/h) et 2 puits Ateliers Centraux (60 m<sup>3</sup>/h), interceptant l'aval d'Amélie 2 et Bonn au sud est d'Amélie, ainsi que 3 pompages (30 m<sup>3</sup>/h)dans les piézos 316, 318 et 319 (aires stockage). Ces pompages devraient fonctionner jusqu'en 2008 (liés à la fin du déstockage Bonn).

#### 2.1.3. Conclusion

En conclusion, l'échéancier devrait être le suivant :

- A partir de 2008, 9 puits de dépollution (2 à l'ouest, 7 à l'est) pour 1300 m<sup>3</sup>/h, soit une réduction à venir de 500 m3/h.
- A partir de 2011, 5 puits de dépollution à l'est pour 550 m<sup>3</sup>/h.
- Arrêt vers 2013.

#### 2.2. Puits de fixation

#### 2.2.1. Langue ouest

#### Terrils Alex et Rodolphe.

- 1 puits de fixation à Alex (70 m<sup>3</sup>/h). La teneur, qui a diminué depuis la fin du traitement du terril, est actuellement d'environ 12gCl/l. Cette teneur, qui

évolue selon une exponentielle décroissante de constante de temps proche de 2,5 ans, devrait être inférieure à 0,3g/l dans 10 ans maximum.

1 puits de fixation à Rodolphe (60 m<sup>3</sup>/h). La teneur est passée de 8 à 4,5 g/l en 2 ans depuis l'étanchement du terril. Pour diviser la teneur par 20, avec une constante de temps comprise entre 2 et 2,5, il faudra entre 6 et 7 ans; l'arrêt est prévu pour 2012.

### Terril Marie Louise.

7 puits de fixation dont 3 profonds. Le dispositif est très efficace pour ce terril; avec un débit de 140 m3/h au total, les fuites vers l'aval sont insignifiantes malgré la dissolution accélérée du terril en cours. Etant donné que la constante de temps est inférieure à 2 ans et que le stock de sel sous le terril aura fortement diminué d'ici 2007, ce dispositif devra fonctionner environ 4 ans après la fin du traitement du terril, soit jusqu'en 2011.

#### 2.2.2. Langue est

#### **Terrils Amélie**

- 11 puits de fixation (550 m3/h), dont 5 profonds (100m3/h) et 1 complet. Après la fin du traitement du terril nord (environ 2009), il faudra compter 4 à 5 ans pour atteindre la potabilité, étant donné que la constante de temps est faible en raison des pompages et que le stock en profondeur diminue régulièrement. Arrêt prévisionnel en 2013-2014, les 2 puits profonds situés à l'aval s'arrêtant en dernier.

#### Terrils Joseph Else

2 puits et 2 drains (80 m3/h plus 40 équivalents). Le terril ouest est étanché depuis deux ans. Le terril est vient d'être terminé en 2005. L'arrêt des drains peut être envisagé pour 2007. Les puits, selon une décroissance exponentielle de constante de temps 1 an, devraient atteindre la potabilité dans 5 à 6 ans (2011).

#### **Terrils Anna Fernand**

- **3** puits de fixation : 2 pour Anna (140 m3/h) et 1 pour Fernand (280 m3/h). Le traitement du terril Fernand par dissolution est quasiment terminé ; il reste à terminer le remodelage et à le végétaliser pour éviter des infiltrations résiduelles provenant de la dalle de sel résiduelle. Le puits, qui sert à arroser Anna, devrait évoluer rapidement après l'arrêt de la dissolution Anna (2007), terril pour lequel il a également servi de fixation. En effet, la vitesse de la nappe est importante sous le terril Fernand (4m/j) et le nettoyage devrait être rapide d'ici 2010. Pour les puits d'Anna, il faut compter 5 ans après l'arrêt de la dissolution, en raison d'une vitesse moins rapide de la nappe et d'un stock de sel plus important, soit jusqu'en 2012.

#### Terrils Eugène Théodore.

4 puits de fixation : 2 pour Eugène (165 m3/h) 2 pour Théodore (55 m3/h). Un des puits de fixation (VT3 : 120 m3/h) fournit de l'eau industrielle pour CCW. Le terril Théodore a été traité par dissolution. Depuis la fin du traitement en 2002, la teneur des puits de fixation de ce terril a été divisée par cinq (2 g/l fin 2005). Deux piézomètres ont été mis en place sur le terril : un de surface et un profond. Ils évoluent de façon semblable : de près de 9 g/l, ils ont chuté à 2,5 g/l en moins de 2 ans, anticipant la diminution sur les puits. Selon cette évolution, les puits descendront à moins de 1 g/l dans deux ans et pourront être arrêtés en 2008, d'autant plus que la barrière de dépollution est juste en aval.

Le terril Eugène a été étanché en 2004. La teneur des puits varie peu autour de 3 g/l; l'effet du traitement du terril n'apparaît pas encore. La teneur devrait évoluer comme à Théodore : le puits de fixation VT1 pourrait être arrêté en 2008 (avant si l'on admet que la dépollution en aval suffit), le puits VT3 serait laissé à disposition de CCW.

#### **Terrils Ensisheim**

Les 2 puits de fixation sur le carreau d'Ensisheim (capacité 500 m3/h) ont été arrêtés en 2003. En effet, le traitement des terrils étant terminé depuis 2001, et la nappe se nettoyant rapidement à Ensisheim, la teneur des puits qui n'a jamais été très élevée (maximum 3g/l) est revenue rapidement au dessous de 250 mg/l d'abord au puits nord, le front nettement marqué entre 700 et 200 mg/l se déplaçant du nord au sud.

#### 2.2.3. Conclusion

En conclusion, l'échéancier est le suivant :

- 31 puits de fixation jusqu'en 2007 (1560 m3/h).
- 26 puits jusqu'en 2009 (1400 m3/h).
- 22 puits à partir de 2010 (890 m3/h).
- 7 puits en 2012 (440 m3/h).
- Arrêt en 2014.

#### 2.3. Echéancier global

Sur le planning de marche des puits joint, on constate une évolution en faveur des puits de fixation. Ce rééquilibrage des pompages est un objectif poursuivi depuis quelques années avec l'implantation de nouveaux puits.

En effet, les puits de fixation sont beaucoup plus efficaces pour l'extraction de sel : avec un débit total inférieur de 20% aux puits de dépollution, ils extraient plus de quatre fois plus de sel.

Au niveau du coût de la dépollution, les puits de fixation permettent de tenir une teneur moyenne des pompages de l'ordre de 8g NaCl /L, donc un coût moyen de  $6 \in /t$ . NaCl extraite. Il est donc économiquement intéressant de réaliser une fixation la plus complète des terrils pour ne pas ensuite aller rechercher le sel non fixé, dans les puits de dépollution à l'aval où il sera dilué.

C'est ce que nous avons fait sur les 3 derniers terrils en traitement : Anna, Amélie et surtout Marie Louise pour lequel on va pouvoir s'affranchir de la dépollution à l'aval (cf. Rodolphe).

Les objectifs sont donc les suivants :

- Garder le minimum d'ouvrages de dépollution à coût élevé après 2007, soit les 2 barrières ouest (2 puits) et est (6 à 7 puits), puis les arrêter dés que possible ou économiquement raisonnable en acceptant un nettoyage final naturel par dilution.
- Arrêter les puits de fixation devenus peu efficace quand on est obligé de conserver une dépollution à l'aval comme à Théodore et Eugène en 2008.
- Préparer la réflexion sur l'arrêt des ouvrages après 2012 (pour certains avant) en raison d'une teneur extraite très faible (< 1 g/l), de coûts disproportionnés pour le NaCl extrait (> 50 €/t), et de tonnages résiduels négligeables par rapport à ce que la nappe est capable d'accepter et de diluer.

Cette évaluation du fonctionnement des pompages est basée sur le retour d'expérience de ces dernières années pendant lesquelles les pompages ont beaucoup évolué. Elle est sensible à la précision sur les constantes de temps des ouvrages, difficile à appréhender quand ils interceptent un flux de sel provenant de l'aval éloigné ; c'est le cas des puits de dépollution. Elle est également sensible à l'avancement du programme de traitement des terrils.

En admettant qu'on ne prenne aucun retard sur le programme de dépollution mais plutôt de l'avance comme actuellement, il est certain que les pompages de dépollution et de fixation pourront être arrêtés avant 2015 et peut être dès 2013.

Annexes :

Echéancier des pompages. Evolution des quantités et des teneurs extraites. Evolution pompages et infiltrations par rapport au stock sel. Adéquation Terrils – Nappe – Puits Planning des ouvrages démarrés et arrêtés de 1998 à 2005. Graphiques sur l'évolution du sel extrait par secteurs

|    | Puits                 | m3/h  | 2005    | 2006    | 2007    | 2008    | 2009   | 2010   | 2011   | 2012       | 2013       | 2014  |
|----|-----------------------|-------|---------|---------|---------|---------|--------|--------|--------|------------|------------|-------|
|    | Dépollution           |       |         |         |         |         |        |        |        |            |            |       |
| 1  | Ungersheim n°1        | 40    | 1800    | 1500    | 1200    | 800     | 400    | 100    |        |            |            |       |
| 2  | Ungersheim n°2        | 36    | 2100    | 1500    | 1200    | 800     | 400    | 100    |        |            |            |       |
| 3  | Ensisheim cité n°1    | 350   | 5500    | 5200    | 4000    | 2000    |        |        |        |            |            |       |
| 4  | Ensisheim cité n°2    | 180   | 2600    | 2400    | 1500    | 500     |        |        |        |            |            |       |
| 5  | Ensisheim cité n°3    | 320   | 2700    | 1900    | 600     |         |        |        |        |            |            |       |
| 6  | Ensisheim sud n°1     | 106   | 2200    | 2000    | 1800    | 1400    | 1100   | 800    | 500    | 300        | 200        |       |
| 7  | Ensisheim sud n°2     | 105   | 5200    | 4500    | 3500    | 3000    | 2200   | 1700   | 1300   | 900        | 500        |       |
| 8  | Ensisheim sud n°3     | 45    | 1200    | 800     | 300     |         |        |        |        |            |            |       |
| 9  | Ensisheim sud n°4     | 180   | 4300    | 3700    | 3000    | 2500    | 2000   | 1500   | 1000   | 600        | 200        |       |
| 10 | Ensisheim sud n°5     | 45    | 1700    | 1500    | 1400    | 1100    | 800    | 600    | 500    | 200        | 100        |       |
| 11 | Ruelisheim n°1        | 160   | 2100    | 1800    | 1200    | 900     | 600    | 400    | 500    |            |            |       |
| 12 | Ruelisheim n°2        | 115   | 2800    | 2200    | 1600    | 1300    | 1000   | 800    | 500    |            |            |       |
| 14 | Gravière Max n°2      | 7     | 1200    | 1000    | 800     | 200     |        |        |        |            |            |       |
| 15 | Gravière Max nº3      | 8     | 700     | 500     | 200     | 200     |        |        |        |            |            |       |
| 16 | Ateliers centraux 1   | 25    | 1400    | 1000    | 600     |         |        |        |        |            |            |       |
| 17 | Ateliers centraux 2   | 35    | 500     | 300     | 100     |         |        |        |        |            |            |       |
| 18 | Piézo 416             | 11    | 1100    | 1000    | 600     |         |        |        |        |            |            |       |
| 19 | Piézo 418             | 6     | 1100    | 1000    | 600     |         |        |        |        |            |            |       |
| 20 | Piézo 419             | 6     | 500     | 200     | 100     |         |        |        |        |            |            |       |
|    | Débit total m3/h      | 1 790 | 1790    | 1790    | 1790    | 1324    | 787    | 787    | 551    | 436        | 436        |       |
|    | t NaCl extraites      |       | 41600   | 34500   | 24500   | 14500   | 8500   | 6000   | 3800   | 2000       | 1000       |       |
|    | Fixation              |       |         |         |         |         |        |        |        |            |            |       |
| 1  | Alex                  | 70    | 11200   | 9000    | 7000    | 6000    | 5000   | 3500   | 2000   | 1200       | 800        | 400   |
| 2  | Rodolphe              | 70    | 4300    | 3500    | 2500    | 1800    | 1000   | 500    | 300    |            |            |       |
| 3  | Dynamitière n°1       | 20    | 3700    | 3500    | 2800    | 2500    | 2000   | 1200   | 500    |            |            |       |
| 4  | Dynamitière n°2       | 20    | 7000    | 7000    | 6000    | 5000    | 3000   | 2000   | 800    |            |            |       |
| 5  | Dynamitière n°3       | 18    | 9700    | 9500    | 8500    | 6000    | 4000   | 2500   | 1200   |            |            |       |
| 6  | Dynamitière n°4       | 36    | 1900    | 1700    | 1500    | 1000    | 800    | 500    | 200    |            |            |       |
| 7  | Marie Louise n°1      | 16    | 4100    | 3500    | 2500    | 2000    | 1500   | 800    | 400    |            |            |       |
| 8  | Marie Louise n°2      | 18    | 9200    | 9000    | 6000    | 4500    | 3000   | 1500   | 500    |            |            |       |
| 9  | Marie Louise nº3      | 14    | 1000    | 800     | 700     | 500     | 400    | 200    |        |            |            |       |
| 10 | Eugene n°1            | 65    | 2400    | 1800    | 800     | 000.0   | 0.04   |        |        |            |            |       |
| 11 | Eugene n°2            | 15    | 2900    | 2200    | 1200    | 200 C   | CW     |        |        |            |            |       |
| 12 | Théodore n°2          | 15    | 1300    | 400     | 200     |         |        |        |        |            |            |       |
| 14 | Fernand               | 280   | 21000   | 16000   | 12000   | 10000   | 2000   |        |        |            |            |       |
| 15 | Anna nº1              | 200   | 11500   | 11000   | 10000   | 8000    | 5000   | 3000   | 1500   |            |            |       |
| 16 | Anna n°2              | 60    | 26500   | 23000   | 21000   | 16000   | 12000  | 7500   | 3500   |            |            |       |
| 17 | Joseph Else est       | 37    | 17800   | 15000   | 8000    | 4000    | 1200   | 200    |        |            |            |       |
| 18 | drain JEE             | 35    | 2800    | 1200    |         |         |        |        |        |            |            |       |
| 19 | joseph Else ouest     | 45    | 6600    | 6000    | 3500    | 2000    | 900    |        |        |            |            |       |
| 20 | surface JEO           | 6     | 200     | 100     |         |         |        |        |        |            |            |       |
| 21 | Amélie nº1            | 25    | 3700    | 3200    | 2000    | 1600    | 1200   | 1000   | 800    | 500        | 200        |       |
| 22 | Amélie n°2            | 40    | 14900   | 14000   | 11000   | 10000   | 8000   | 5000   | 3000   | 1200       | 700        | 300   |
| 23 | Amélie n°3            | 100   | 17500   | 16000   | 14000   | 12000   | 10000  | 6200   | 3700   | 1500       | 1000       | 400   |
| 24 | Amélie n°4            | 110   | 14900   | 14000   | 13000   | 11000   | 9000   | 5000   | 3000   | 1200       | 700        | 300   |
| 25 | Amélie n°5            | 55    | 1600    | 800     | 500     | 400     | 200    | 100    |        |            |            |       |
| 26 | Amélie n°6            | 10    | 1200    | 800     | 500     | 400     | 300    | 200    | 200    |            |            |       |
| 27 | Amélie n°7            | 15    | 2000    | 1600    | 1200    | 1000    | 800    | 500    | 200    |            |            |       |
| 28 | Amélie n°8            | 15    | 2600    | 2200    | 2000    | 1500    | 1000   | 600    | 200    |            |            |       |
| 29 | Amelie n°9            | 115   | 1300    | 1200    | 1000    | 800     | 400    | 2000   | 4000   | 4000       | 000        | 000   |
| 30 | Amelle n°10           | 30    | 4200    | 3500    | 3000    | 2700    | 2400   | 2000   | 1600   | 1200       | 008        | 300   |
| 31 | Amelle n°11           | 1 560 | 3800    | 3200    | 2800    | 2600    | 2400   | 2000   | 1600   | 1200       | 800<br>40F | 300   |
|    | t NaCl extraites      | 1 500 | 213400  | 185500  | 145500  | 113500  | 77500  | 46000  | 25200  | 8000       | 5000       | 2000  |
|    | Dépollution et fixati | on    |         |         |         |         |        |        | _0200  | 0000       | 0000       | 2000  |
|    | Déhit total m3/h      |       | 3 350   | 3 350   | 3 300   | 2 728   | 2 101  | 1 751  | 1 22/  | <b>8/1</b> | Q/1        | 200   |
|    |                       |       | 255 000 | 220.000 | 170 000 | 128 000 | 86,000 | 52 000 | 29,000 | 10 000     | 6 000      | 2 000 |
|    | LINGOI EXITAILES      |       | 200 000 | 220 000 | 170 000 | 120 000 | 00 000 | 52 000 | 23 000 | 10 000     | 0.000      | 2 000 |

#### ECHEANCIER DES POMPAGES

| kt NaCl dans la nappe    | 550-600 | 360-410 | 220-270 | 110-160 | 40-90 | <40  | <10  | 0    |      |      |
|--------------------------|---------|---------|---------|---------|-------|------|------|------|------|------|
| Teneur moyenne: g/l NaCl | 9,5     | 8,2     | 6,4     | 5,9     | 4,9   | 3,7  | 2,7  | 1,5  | 0,9  | 0,7  |
| € t. Nacl extraite       | 5,3     | 6,1     | 7,8     | 8,5     | 10,2  | 13,5 | 18,4 | 33,6 | 56,1 | 76,0 |
| Coût ANNUEL K€           | 1340    | 1340    | 1324    | 1091    | 876   | 700  | 534  | 336  | 336  | 152  |



#### EVOLUTION DES POMPAGES: VOLUMES POMPES ET TENEURS NaCI

A partir de 1999, l'impact des nouveaux puits de fixation est net sur la teneur.

A partir de 2001, les nouveaux puits de dépollution (barrière est) ont un effet inverse sur la teneur.

L'augmentation des volumes pompés sur la période est essentiellement due aux taux de marche, les débits des ouvrages arrêtés et démarrés se compensant.



EVOLUTION SEL NAPPE

## ADEQUATION TERRILS - NAPPE - PUITS

| Secteur           | Flux d'eau<br>susceptible<br>d'être<br>contaminé<br>10 <sup>3</sup> m³/an | Volume d'eau<br>extrait par<br>les puits<br>10 <sup>3</sup> m³/an | Infiltration saline tNaCl/an | Extraction<br>de sel<br>tNaCl/an | Destockage sel<br>tNaCl/an | Stock NaCl<br>selon bilan<br>matière<br>(kt) | Stock NaCl<br>selon BRGM<br>(estimation)<br>(kt) | Rapport<br>stock/<br>destockage |
|-------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|----------------------------------|----------------------------|----------------------------------------------|--------------------------------------------------|---------------------------------|
| ALEX              | 620                                                                       | 1 000                                                             | 0                            | 12 000                           | 12 000                     | 150                                          | J                                                |                                 |
| RODOLPHE          | 180                                                                       | 500                                                               | 0                            | 4 000                            | 4 000                      | 33                                           | }    150                                         | 8 à 9                           |
| MARIE-LOUISE      | 900                                                                       | 1 000                                                             | 12 000                       | 36 000                           | 24 000                     | 67                                           | 60                                               | 3 à 5                           |
| LANGUE Ouest      | 1 700                                                                     | 2 500                                                             | 12 000                       | 52 000                           | 40 000                     | 250                                          | 210                                              | 5 à 7                           |
| ENSISHEIM         | 1 500                                                                     | 8 200                                                             | 0                            | 9 000                            | 9 000                      | 20                                           | 100                                              | (NS pour langue<br>Est)         |
| EUGENE            | 1 125                                                                     | 7 100                                                             | 0                            | 17 000                           | J                          | )                                            | )                                                |                                 |
| THEODORE          | 225                                                                       | 400                                                               | 0                            | 1 000                            | } 18 000                   | 2 150                                        |                                                  |                                 |
| FERNAND / ANNA    | 1 600                                                                     | 3 500                                                             | 6 000                        | 50 000                           | 44 000                     | J                                            | 200                                              | 2 à 3                           |
| AMELIE 2          | 200                                                                       | 800                                                               |                              | 2 000                            | )                          | )                                            |                                                  |                                 |
| AMELIE Est        | 400                                                                       | 500                                                               | 0                            | 1 000                            | 46 000                     | <b>7</b> 0                                   |                                                  |                                 |
| AMELIE Nord       | 1 900                                                                     | 4 400                                                             | 12 000                       | 55 000                           | J                          | J                                            | J                                                |                                 |
| JOSEPH-ELSE-Ouest | 150                                                                       | 400                                                               | 0                            | 5 000                            | J                          |                                              | l                                                |                                 |
| JOSEPH-ELSE-Est   | 100                                                                       | 700                                                               | 0                            | 18 000                           | } 23 000                   | 60                                           | J 40                                             | 2 à 3                           |
| LANGUE Est        | 7 200                                                                     | 26 000                                                            | 18 000                       | 158 000                          | 140 000                    | 300                                          | 340                                              | 2 à 3                           |
| TOTAL             | 8 900                                                                     | 28 500                                                            | 30 000                       | 210 000                          | 180 000                    | 550                                          | 550                                              | 3                               |

#### PLANNING DES NOUVEAUX PUITS DE FIXATION ET DE DEPOLLUTION

|              | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | TOTAL |
|--------------|------|------|------|------|------|------|------|-------|
| MARIE LOUISE |      |      |      |      |      |      |      |       |
| prevu        | 4    |      | 2    | 2    |      |      |      | 8     |
| réalisé      |      |      | 3    |      |      | 1    |      | 4     |
| AMELIE       |      |      |      |      |      |      |      |       |
| prevu        |      | 2    |      | 2    |      |      |      | 4     |
| réalisé      |      |      | 3    |      |      | 2    | 3    | 8     |
| МАХ          |      |      |      |      |      |      |      |       |
| prevu        |      | 1    |      |      |      |      |      | 1     |
| réalisé      |      |      |      |      |      |      |      |       |
| JOSEPH ELSE  |      |      |      |      |      |      |      |       |
| prevu        |      |      | 1    |      |      |      |      | 1     |
| réalisé      |      |      | 1    |      |      |      |      | 1     |
| ENSISHEIM    |      |      |      |      |      |      |      |       |
| prevu        |      | 1    |      |      | 2    | 2    |      | 5     |
| réalisé      |      |      |      | 1    | 3    | 1    |      | 5     |
| ANNA         |      |      |      |      |      |      |      |       |
| prevu        |      |      | 1    |      |      |      |      | 1     |
| réalisé      |      |      |      |      | 1    | 1    |      | 2     |
| TOTAL        |      |      |      |      |      |      |      |       |
| prevu        | 4    | 4    | 4    | 4    | 2    | 2    |      | 20    |
| réalisé      |      |      | 7    | 1    | 4    | 5    | 3    | 20    |

STRATEGIE GLOBALE POUR LE BASSIN POTASSIQUE

#### PUITS DE FIXATION ET DE DEPOLLUTION ARRETES

|              | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | TOTAL |
|--------------|------|------|------|------|------|------|------|------|-------|
| ALEX         |      |      |      |      |      |      |      |      |       |
| Fixation     |      |      |      |      |      | 2    |      |      | 2     |
| MARIE LOUISE |      |      |      |      |      |      |      |      |       |
| Dépollution  |      |      |      |      |      |      | 1    | 3    | 4     |
| ENSISHEIM    |      |      |      |      |      |      |      |      |       |
| Dépollution  | 2    |      |      |      |      | 1    | 1    |      | 4     |
| Fixation     |      |      |      |      |      | 2    |      |      | 2     |
| THEODORE     |      |      |      |      |      |      |      |      |       |
| Fixation     |      |      |      |      |      | 1    |      |      | 1     |
| Gravière MAX |      |      |      |      |      |      |      |      |       |
| Dépollution  |      |      |      |      | 3    | 1    |      |      | 4     |
| Langue ouest |      |      |      |      |      | 2    | 1    | 3    | 6     |
| Langue est   | 2    |      |      |      | 3    | 5    | 1    |      | 11    |
| TOTAL        | 2    |      |      |      | 3    | 7    | 3    | 3    | 17    |





















Modélisation de la salure profonde au droit et en aval du Bassin Potassique


Centre scientifique et technique 3, avenue Claude-Guillemin BP 6009 45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 Service géologique régional Alsace 15 rue du Tanin, Lingolsheim BP 177 67834 Tanneries cedex - France Tél. : 03 88 77 48 90